Gossypol inhibits cullin neddylation by targeting SAG-CUL5 and RBX1-CUL1 complexes.

Cullin-RING E3 ligase (CRL) is the largest family of E3 ubiquitin ligase, responsible for ubiquitylation of ?20% of cellular proteins. CRL plays an important role in many biological processes, particularly in cancers due to abnormal activation. CRL activation requires neddylation, an enzymatic cascade transferring small ubiquitin-like protein NEDD8 to a ...
conserved lysine residue on cullin proteins. Recent studies have validated that neddylation is an attractive anticancer target. In this study, we report the establishment of an Alpha-Screen-based high throughput screen (HTS) assay for in vitro CUL5 neddylation, and screened a library of 17,000 compounds including FDA approved drugs, natural products and synthetic drug-like small-molecule compounds. Gossypol, a natural compound derived from cotton seed, was identified as an inhibitor of cullin neddylation. Biochemical studies showed that gossypol blocked neddylation of both CUL5 and CUL1 through direct binding to SAG-CUL5 or RBX1-CUL1 complex, and CUL5-H572 plays a key role for gossypol binding. On cellular level, gossypol inhibited cullin neddylation in a variety of cancer cell lines and selectively caused accumulation of NOXA and MCL1, the substrates of CUL5 and CUL1, respectively, in multiple cancer cell lines. Combination of gossypol with specific MCL1 inhibitor synergistically suppress growth of human cancer cells. Our study revealed a previously unknown anti-cancer mechanism of gossypol with potential to develop a new class of neddylation inhibitors.
Mesh Terms:
Calcium-Binding Proteins, Carrier Proteins, Cell Line, Tumor, Contraceptive Agents, Male, Cullin Proteins, DNA-Binding Proteins, Dose-Response Relationship, Drug, Drug Screening Assays, Antitumor, Gossypol, High-Throughput Screening Assays, Humans, Models, Biological, Models, Molecular, Molecular Structure, Multiprotein Complexes, Protein Binding, Protein Processing, Post-Translational, Structure-Activity Relationship, Tumor Suppressor Proteins
Neoplasia
Date: Dec. 01, 2019
Download Curated Data For This Publication
226735
Switch View:
  • Interactions 4
  • Chemical Interactions 2