USP1 deubiquitinates Akt to inhibit PI3K-Akt-FoxO signaling in muscle during prolonged starvation.

PI3K-Akt-FoxO-mTOR signaling is the central pathway controlling growth and metabolism in all cells. Ubiquitination of the protein kinase Akt prior to its phosphorylation is required for PI3K-Akt activity. Here, we found that the deubiquitinating (DUB) enzyme USP1 removes K63-linked polyubiquitin chains on Akt to restrict PI3K-Akt-FoxO signaling in mouse muscle ...
during prolonged starvation. DUB screening platform identified USP1 as a direct DUB for Akt, and USP1 depletion in mouse muscle increased Akt ubiquitination, PI3K-Akt-FoxO signaling, and glucose uptake during fasting. Co-immunoprecipitation and mass spectrometry identified disabled homolog-2 (Dab2), the tuberous sclerosis complex TSC1/TSC2, and PHLPP1 as USP1 bound proteins. During starvation, Dab2 is essential for Akt recruitment to USP1-TSC1-PHLPP1 complex, and for PI3K-Akt-FoxO inhibition. Surprisingly, USP1 limits TSC1 levels to sustain mTOR-mediated basal protein synthesis rates and maintain its own protein levels. We propose that Dab2 recruits Akt to USP1-TSC1-PHLPP1 complex to efficiently terminate the transmission of growth signals when cellular energy level is low.
EMBO Rep
Date: Dec. 03, 2019
Download Curated Data For This Publication
227125
Switch View:
  • Interactions 130