MYSM1-AR complex-mediated repression of Akt/c-Raf/GSK-3? signaling impedes castration-resistant prostate cancer growth.
Epigenetic alterations that lead to dysregulated gene expression in the progression of castration-resistant prostate cancer (CRPC) remain elusive. Here, we investigated the role of histone deubiquitinase MYSM1 in the pathogenesis of prostate cancer (PCa). Tissues and public datasets of PCa were evaluated for MYSM1 levels. We explored the effects of ... MYSM1 on cell proliferation, senescence and viability both in vitro and in vivo. Integrative database analyses and co-immunoprecipitation assays were performed to elucidate genomic association of MYSM1 and MYSM1-involved biological interaction network in PCa. We observed that MYSM1 were downregulated in CRPC compared to localized prostate tumors. Knockdown of MYSM1 promoted cell proliferation and suppressed senescence of CRPC cells under condition of androgen ablation. MYSM1 downregulation enhanced the tumorigenic ability in nude mice. Integrative bioinformatic analyses of the significantly associated genes with MYSM1 revealed MYSM1-correlated pathways, providing substantial clues as to the role of MYSM1 in PCa. MYSM1 was able to bind to androgen receptor instead of increasing its expression and knockdown of MYSM1 resulted in activation of Akt/c-Raf/GSK-3? signaling. Together, our findings indicate that MYSM1 is pivotal in CRPC pathogenesis and may be established as a potential target for future treatment.
Mesh Terms:
Animals, Gene Expression Regulation, Neoplastic, Glycogen Synthase Kinase 3 beta, Humans, Male, Mice, Mice, Nude, Oncogene Protein v-akt, Prostatic Neoplasms, Castration-Resistant, Proto-Oncogene Proteins c-raf, Receptors, Androgen, Signal Transduction, Trans-Activators, Ubiquitin-Specific Proteases
Animals, Gene Expression Regulation, Neoplastic, Glycogen Synthase Kinase 3 beta, Humans, Male, Mice, Mice, Nude, Oncogene Protein v-akt, Prostatic Neoplasms, Castration-Resistant, Proto-Oncogene Proteins c-raf, Receptors, Androgen, Signal Transduction, Trans-Activators, Ubiquitin-Specific Proteases
Aging (Albany NY)
Date: Dec. 24, 2018
PubMed ID: 31761786
View in: Pubmed Google Scholar
Download Curated Data For This Publication
228206
Switch View:
- Interactions 2