Mechanically transduced immunosorbent assay to measure protein-protein interactions.
Measuring protein-protein interaction (PPI) affinities is fundamental to biochemistry. Yet, conventional methods rely upon the law of mass action and cannot measure many PPIs due to a scarcity of reagents and limitations in the measurable affinity ranges. Here, we present a novel technique that leverages the fundamental concept of friction ... to produce a mechanical signal that correlates to binding potential. The mechanically transduced immunosorbent (METRIS) assay utilizes rolling magnetic probes to measure PPI interaction affinities. METRIS measures the translational displacement of protein-coated particles on a protein-functionalized substrate. The translational displacement scales with the effective friction induced by a PPI, thus producing a mechanical signal when a binding event occurs. The METRIS assay uses as little as 20 pmols of reagents to measure a wide range of affinities while exhibiting a high resolution and sensitivity. We use METRIS to measure several PPIs that were previously inaccessible using traditional methods, providing new insights into epigenetic recognition.
Mesh Terms:
Biological Assay, Biophysical Phenomena, Immunosorbents, Magnetics, Protein Binding, Protein Interaction Mapping, Proteins, Proteomics
Biological Assay, Biophysical Phenomena, Immunosorbents, Magnetics, Protein Binding, Protein Interaction Mapping, Proteins, Proteomics
Elife
Date: Dec. 28, 2020
PubMed ID: 34581668
View in: Pubmed Google Scholar
Download Curated Data For This Publication
234421
Switch View:
- Interactions 5