The N-terminal cysteine is a dual sensor of oxygen and oxidative stress.

Cellular homeostasis requires the sensing of and adaptation to intracellular oxygen (O2) and reactive oxygen species (ROS). The Arg/N-degron pathway targets proteins that bear destabilizing N-terminal residues for degradation by the proteasome or via autophagy. Under normoxic conditions, the N-terminal Cys (Nt-Cys) residues of specific substrates can be oxidized by ...
dioxygenases such as plant cysteine oxidases and cysteamine (2-aminoethanethiol) dioxygenases and arginylated by ATE1 R-transferases to generate Arg-CysO2(H) (R-CO2). Proteins bearing the R-CO2 N-degron are targeted via Lys48 (K48)-linked ubiquitylation by UBR1/UBR2 N-recognins for proteasomal degradation. During acute hypoxia, such proteins are partially stabilized, owing to decreased Nt-Cys oxidation. Here, we show that if hypoxia is prolonged, the Nt-Cys of regulatory proteins can be chemically oxidized by ROS to generate Arg-CysO3(H) (R-CO3), a lysosomal N-degron. The resulting R-CO3 is bound by KCMF1, a N-recognin that induces K63-linked ubiquitylation, followed by K27-linked ubiquitylation by the noncanonical N-recognin UBR4. Autophagic targeting of Cys/N-degron substrates is mediated by the autophagic N-recognin p62/SQTSM-1/Sequestosome-1 through recognition of K27/K63-linked ubiquitin (Ub) chains. This Cys/N-degron-dependent reprogramming in the proteolytic flux is important for cellular homeostasis under both chronic hypoxia and oxidative stress. A small-compound ligand of p62 is cytoprotective under oxidative stress through its ability to accelerate proteolytic flux of K27/K63-ubiquitylated Cys/N-degron substrates. Our results suggest that the Nt-Cys of conditional Cys/N-degron substrates acts as an acceptor of O2 to maintain both O2 and ROS homeostasis and modulates half-lives of substrates through either the proteasome or lysosome by reprogramming of their Ub codes.
Mesh Terms:
Animals, Autophagy, Cell Line, GTPase-Activating Proteins, Gene Expression Regulation, Homeostasis, Humans, Interleukins, Metabolic Networks and Pathways, Neoplasm Proteins, Oxidation-Reduction, Oxidative Stress, Oxygen
Proc Natl Acad Sci U S A
Date: Dec. 14, 2020
Download Curated Data For This Publication
235691
Switch View:
  • Interactions 7