Heterologous overexpression of Sup35 in Escherichia coli leads to both monomer and complex states.

The heterologous overexpression states of prion proteins play a critical role in understanding the mechanisms of prion-related diseases. We report herein the identification of soluble monomer and complex states for a bakers' yeast prion, Sup35, when expressed in Escherichia coli. Two peaks are apparent with the elution of His-tagged Sup35 ...
by imidazole from a Ni2+ affinity column. Peak I contains Sup35 in both monomer and aggregated states. Sup35 aggregate is abbreviated as C-aggregate and includes a non-fibril complex comprising Sup35 aggregate-HSP90-Dna K, ATP synthase ? unit (chain D), 30S ribosome subunit, and Omp F. The purified monomer and C-aggregate can remain stable for an extended period of time. Peak II contains Sup35 also in both monomer and aggregated (abbreviated as S-aggregate) states, but the aggregated states are caused by the formation of inter-Sup35 disulfide bonds. This study demonstrates that further assembly of Sup35 non-fibril C-aggregate can be interrupted by the chaperone repertoire system in E. coli.
Mesh Terms:
Escherichia coli, Peptide Termination Factors, Prions, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins
Proteins
Date: Dec. 01, 2021
Download Curated Data For This Publication
236935
Switch View:
  • Interactions 1