PRMT5-mediated RNF4 methylation promotes therapeutic resistance of APL cells to As2O3 by stabilizing oncoprotein PML-RAR?.

Acute promyelocytic leukemia (APL) is a hematological malignancy driven by the oncoprotein PML-RAR?, which can be treated with arsenic trioxide (As2O3) or/and all-trans retinoic acid. The protein arginine methyltransferase 5 (PRMT5) is involved in tumorigenesis. However, little is known about the biological function and therapeutic potential of PRMT5 in APL. ...
Here, we show that PRMT5 is highly expressed in APL patients. PRMT5 promotes APL by interacting with PML-RAR? and suppressing its ubiquitination and degradation. Mechanistically, PRMT5 attenuates the interaction between PML-RAR? and its ubiquitin E3 ligase RNF4 by methylating RNF4 at Arg164. Notably, As2O3 treatment triggers the dissociation of PRMT5 from PML nuclear bodies, attenuating RNF4 methylation and promoting RNF4-mediated PML-RAR? ubiquitination and degradation. Moreover, knockdown of PRMT5 and pharmacological inhibition of PRMT5 with the specific inhibitor EPZ015666 significantly inhibit APL cells growth. The combination of EPZ015666 with As2O3 shows synergistic effects on As2O3-induced differentiation of bone marrow cells from APL mice, as well as on apoptosis and differentiation of primary APL cells from APL patients. These findings provide mechanistic insight into the function of PRMT5 in APL pathogenesis and demonstrate that inhibition of PRMT5, alone or in combination with As2O3, might be a promising therapeutic strategy against APL.
Mesh Terms:
Animals, Antineoplastic Agents, Arsenic Trioxide, Cell Line, Tumor, Drug Resistance, Neoplasm, Humans, Isoquinolines, Leukemia, Promyelocytic, Acute, Methylation, Mice, Nuclear Proteins, Oncogene Proteins, Fusion, Protein-Arginine N-Methyltransferases, Pyrimidines, Transcription Factors, Ubiquitination
Cell Mol Life Sci
Date: May. 27, 2022
Download Curated Data For This Publication
238209
Switch View:
  • Interactions 4