Minimal structure of IRAK-1 to induce degradation of TRAF6.
Excessive activation of Toll-like receptor (TLR) leads to sepsis. Inflammatory responses to various microbiological components are initiated via different TLR proteins, but all TLR signals are transmitted by TRAF6. We reported that TRAF6 associated with ubiquitinated IRAK-1 undergoes proteasome-mediated degradation, suggesting that IRAK-1 has a negative regulatory role in TLR ... signaling. Here, we investigated the minimal structural region of IRAK-1 needed for degradation of TRAF6. The IRAK-1 protein contains an N-terminal death domain (DD; amino acids 1-102), a serine/proline/threonine-rich ProST domain (amino acids 103-197), a central kinase domain with an activation loop (amino acids 198-522), and the C-terminal C1 and C2 domains (amino acids 523-712), which contain two and one putative TRAF6-binding (TB) sites, respectively. TRAF6 degradation was severely impaired by deletion of the DD or C1 domain, and a mutant (DC1) containing only the DD and C1 domains could induce TRAF6 degradation. IRAK-1 mutants lacking the N- or C-terminal amino acids of DD induced little degradation. Deletion or mutation of TB2 (amino acids 585-591) in the C1 domain also inhibited TRAF6 degradation. An IRAK-1 mutant possessing only DD and TB2 did not induce TRAF6 degradation, although a mutant in which a short spacer was inserted between DD and TB2 induced TRAF6 degradation, which and DC1-induced degradation were inhibited by proteasome inhibitors. All IRAK-1 mutants that induced TRAF6 degradation could be immunoprecipitated with TRAF6. Meanwhile, NF-?B activation was observed for all IRAK-1 mutants-including those that failed to induce degradation and was severely impaired only for a mutant carrying mutations in both TBs of C1. These results demonstrate that only DD and TB2 separated by an appropriate distance can induce TRAF6 degradation. Conformational analysis of this minimal structural unit may aid development of low molecular compounds that negatively regulate TLR signaling.
Mesh Terms:
Amino Acids, Interleukin-1 Receptor-Associated Kinases, NF-kappa B, Signal Transduction, TNF Receptor-Associated Factor 6, Toll-Like Receptors
Amino Acids, Interleukin-1 Receptor-Associated Kinases, NF-kappa B, Signal Transduction, TNF Receptor-Associated Factor 6, Toll-Like Receptors
Immunobiology
Date: Dec. 01, 2021
PubMed ID: 35926385
View in: Pubmed Google Scholar
Download Curated Data For This Publication
238572
Switch View:
- Interactions 1