ALS-linked loss of Cyclin-F function affects HSP90.
The founding member of the F-box protein family, Cyclin-F, serves as a substrate adaptor for the E3 ligase Skp1-Cul1-F-box (SCF)<sup>Cyclin-F</sup> which is responsible for ubiquitination of proteins involved in cell cycle progression, DNA damage and mitotic fidelity. Missense mutations in <i>CCNF</i> encoding for Cyclin-F are associated with amyotrophic lateral sclerosis ... (ALS). However, it remains elusive whether <i>CCNF</i> mutations affect the substrate adaptor function of Cyclin-F and whether altered SCF<sup>Cyclin-F</sup>-mediated ubiquitination contributes to pathogenesis in <i>CCNF</i> mutation carriers. To address these questions, we set out to identify new SCF<sup>Cyclin-F</sup> targets in neuronal and ALS patient-derived cells. Mass spectrometry-based ubiquitinome profiling of <i>CCNF</i> knockout and mutant cell lines as well as Cyclin-F proximity and interaction proteomics converged on the HSP90 chaperone machinery as new substrate candidate. Biochemical analyses provided evidence for a Cyclin-F-dependent association and ubiquitination of HSP90AB1 and implied a regulatory role that could affect the binding of a number of HSP90 clients and co-factors. Together, our results point to a possible Cyclin-F loss-of-function-mediated chaperone dysregulation that might be relevant for ALS.
Mesh Terms:
Amyotrophic Lateral Sclerosis, Cyclins, F-Box Proteins, HSP90 Heat-Shock Proteins, Humans, Ubiquitin-Protein Ligases, Ubiquitination
Amyotrophic Lateral Sclerosis, Cyclins, F-Box Proteins, HSP90 Heat-Shock Proteins, Humans, Ubiquitin-Protein Ligases, Ubiquitination
Life Sci Alliance
Date: Sep. 16, 2022
PubMed ID: 36114006
View in: Pubmed Google Scholar
Download Curated Data For This Publication
240084
Switch View:
- Interactions 2,934