Multiplexed kinase interactome profiling quantifies cellular network activity and plasticity.
Dynamic changes in protein-protein interaction (PPI) networks underlie all physiological cellular functions and drive devastating human diseases. Profiling PPI networks can, therefore, provide critical insight into disease mechanisms and identify new drug targets. Kinases are regulatory nodes in many PPI networks; yet, facile methods to systematically study kinase interactome dynamics ... are lacking. We describe kinobead competition and correlation analysis (kiCCA), a quantitative mass spectrometry-based chemoproteomic method for rapid and highly multiplexed profiling of endogenous kinase interactomes. Using kiCCA, we identified 1,154 PPIs of 238 kinases across 18 diverse cancer lines, quantifying context-dependent kinase interactome changes linked to cancer type, plasticity, and signaling states, thereby assembling an extensive knowledgebase for cell signaling research. We discovered drug target candidates, including an endocytic adapter-associated kinase (AAK1) complex that promotes cancer cell epithelial-mesenchymal plasticity and drug resistance. Our data demonstrate the importance of kinase interactome dynamics for cellular signaling in health and disease.
Mesh Terms:
Humans, Neoplasms, Protein Interaction Maps, Signal Transduction
Humans, Neoplasms, Protein Interaction Maps, Signal Transduction
Mol Cell
Date: Mar. 02, 2023
PubMed ID: 36736316
View in: Pubmed Google Scholar
Download Curated Data For This Publication
243102
Switch View:
- Interactions 1,798