The deubiquitinating enzyme STAMBP is a newly discovered driver of triple-negative breast cancer progression that maintains RAI14 protein stability.

Triple-negative breast cancer (TNBC) is a heterogeneous malignancy in women. It is associated with poor prognosis, aggressive malignant behavior, and limited treatment options. In the ubiquitin?proteasome system (UPS), deubiquitinases (DUBs) are potential therapeutic targets for various tumors. In this study, by performing unbiased siRNA screening, we identified STAMBP, a JAMM ...
metalloprotease in the DUB family, as a driver of human TNBC tumor growth. Functionally, the knockdown of STAMBP inhibited the proliferation, migration, and invasion of multiple TNBC cell lines. Immunoprecipitation-mass spectrometry combined with functional and morphological analysis verified the interaction between STAMBP and the actin-binding protein RAI14. Mechanistically, STAMBP stabilized the RAI14 protein by suppressing the K48-linked ubiquitination of RAI14 and thus prevented its proteasomal degradation. Therefore, knocking down STAMBP resulted in the reduction in RAI14 protein levels and suppression of tumor growth in vitro and in vivo. Importantly, high levels of STAMBP were correlated with poor prognosis in TNBC patients. In summary, we reveal a previously unrecognized DUB pathway that promotes TNBC progression and provides a rationale for potential therapeutic interventions for the treatment of TNBC.
Mesh Terms:
Cell Line, Tumor, Cell Movement, Cell Proliferation, Cytoskeletal Proteins, Deubiquitinating Enzymes, Endosomal Sorting Complexes Required for Transport, Female, Gene Expression Regulation, Neoplastic, Humans, Protein Stability, Signal Transduction, Transcription Factors, Triple Negative Breast Neoplasms, Ubiquitin Thiolesterase
Exp Mol Med
Date: Nov. 01, 2022
Download Curated Data For This Publication
244317
Switch View:
  • Interactions 2