Activation of autophagy depends on Atg1/Ulk1-mediated phosphorylation and inhibition of the Hsp90 chaperone machinery.

Cellular homeostasis relies on both the chaperoning of proteins and the intracellular degradation system that delivers cytoplasmic constituents to the lysosome, a process known as autophagy. The crosstalk between these processes and their underlying regulatory mechanisms is poorly understood. Here, we show that the molecular chaperone heat shock protein 90 ...
(Hsp90) forms a complex with the autophagy-initiating kinase Atg1 (yeast)/Ulk1 (mammalian), which suppresses its kinase activity. Conversely, environmental cues lead to Atg1/Ulk1-mediated phosphorylation of a conserved serine in the amino domain of Hsp90, inhibiting its ATPase activity and altering the chaperone dynamics. These events impact a conformotypic peptide adjacent to the activation and catalytic loop of Atg1/Ulk1. Finally, Atg1/Ulk1-mediated phosphorylation of Hsp90 leads to dissociation of the Hsp90:Atg1/Ulk1 complex and activation of Atg1/Ulk1, which is essential for initiation of autophagy. Our work indicates a reciprocal regulatory mechanism between the chaperone Hsp90 and the autophagy kinase Atg1/Ulk1 and consequent maintenance of cellular proteostasis.
Mesh Terms:
Animals, Autophagy, Autophagy-Related Protein-1 Homolog, HSP90 Heat-Shock Proteins, Mammals, Phosphorylation, Saccharomyces cerevisiae, Serine
Cell Rep
Date: Jul. 25, 2023
Download Curated Data For This Publication
245701
Switch View:
  • Interactions 6