Optimized psilocybin production in tryptophan catabolism-repressed fungi.
The high therapeutic potential of psilocybin, a prodrug of the psychotropic psilocin, holds great promise for the treatment of mental disorders such as therapy-refractory depression, alcohol use disorder and anorexia nervosa. Psilocybin has been designated a 'Breakthrough Therapy' by the US Food and Drug Administration, and therefore a sustainable production ... process must be established to meet future market demands. Here, we present the development of an in vivo psilocybin production chassis based on repression of l-tryptophan catabolism. We demonstrate the proof of principle in Saccharomyces cerevisiae expressing the psilocybin biosynthetic genes. Deletion of the two aminotransferase genes ARO8/9 and the indoleamine 2,3-dioxygenase gene BNA2 yielded a fivefold increase of psilocybin titre. We transferred this knowledge to the filamentous fungus Aspergillus nidulans and identified functional ARO8/9 orthologs involved in fungal l-tryptophan catabolism by genome mining and cross-complementation. The double deletion mutant of A. nidulans resulted in a 10-fold increased psilocybin production. Process optimization based on respiratory activity measurements led to a final psilocybin titre of 267?mg/L in batch cultures with a space-time-yield of 3.7?mg/L/h. These results demonstrate the suitability of our engineered A. nidulans to serve as a production strain for psilocybin and other tryptamine-derived pharmaceuticals.
Mesh Terms:
Aspergillus nidulans, Gene Deletion, Indoleamine-Pyrrole 2,3,-Dioxygenase, Metabolic Engineering, Metabolic Networks and Pathways, Psilocybin, Saccharomyces cerevisiae, Transaminases, Tryptophan
Aspergillus nidulans, Gene Deletion, Indoleamine-Pyrrole 2,3,-Dioxygenase, Metabolic Engineering, Metabolic Networks and Pathways, Psilocybin, Saccharomyces cerevisiae, Transaminases, Tryptophan
Microb Biotechnol
Date: Nov. 01, 2024
PubMed ID: 39487767
View in: Pubmed Google Scholar
Download Curated Data For This Publication
253840
Switch View:
- Interactions 4