Copper induces the assembly of a multiprotein aggregate implicated in the release of fibroblast growth factor 1 in response to stress.

Fibroblast growth factor (FGF) 1 is known to be released in response to stress conditions as a component of a multiprotein aggregate containing the p40 extravescicular domain of p65 synaptotagmin (Syt) 1 and S100A13. Since FGF1 is a Cu2+-binding protein and Cu2+ is known to induce its dimerization, we evaluated ...
the capacity of recombinant FGF1, p40 Syt1, and S100A13 to interact in a cell-free system and the role of Cu2+ in this interaction. We report that FGF1, p40 Syt1, and S100A13 are able to bind Cu2+ with similar affinity and to interact in the presence of Cu2+ to form a multiprotein aggregate which is resistant to low concentrations of SDS and sensitive to reducing conditions and ultracentrifugation. The formation of this aggregate in the presence of Cu2+ is dependent on the presence of S100A13 and is mediated by cysteine-independent interactions between S100A13 and either FGF1 or p40 Syt1. Interestingly, S100A13 is also able to interact in the presence of Cu2+ with Cys-free FGF1 and this observation may account for the ability of S100A13 to export Cys-free FGF1 in response to stress. Lastly, tetrathiomolybdate, a Cu2+ chelator, significantly represses in a dose-dependent manner the heat shock-induced release of FGF1 and S100A13. These data suggest that S100A13 may be involved in the assembly of the multiprotein aggregate required for the release of FGF1 and that Cu2+ oxidation may be an essential post-translational intracellular modifier of this process.
Mesh Terms:
Animals, Cell-Free System, Copper, Cysteine, Detergents, Dimerization, Fibroblast Growth Factor 1, Fibroblast Growth Factor 2, Humans, Molybdenum, Nerve Tissue Proteins, Oxidation-Reduction, Peptide Fragments, Rabbits, S100 Proteins, Sodium Dodecyl Sulfate, Stress, Physiological, Synaptotagmin I
J. Biol. Chem.
Date: Jul. 06, 2001
Download Curated Data For This Publication
2866
Switch View:
  • Interactions 3