Aromatic amino-acid biosynthesis in Candida albicans: identification of the ARO4 gene encoding a second DAHP synthase.

The primary step in the aromatic amino-acid biosynthetic pathway in Saccharomyces cerevisiae is catalyzed by two redundant isozymes of 3-deoxy-d-arabinoheptulosonate-7-phosphate (DAHP) synthase, either of which alone is sufficient to permit growth on synthetic complete media lacking aromatic acids (SC-Aro). The activity of one isozyme (encoded by the ARO3 gene) is ...
feedback-inhibited by phenylalanine, whereas the activity of the other isozyme (encoded by the ARO4 gene) is feedback-inhibited by tyrosine. Transcription of both genes is controlled by GCN4. We previously cloned the ARO3 gene from the opportunistic pathogen Candida albicans and found that: (1) it can complement an aro3 aro4 double mutation in S. cerevisiae, an effect inhibited by excess phenylalanine; and (2) its expression is induced in response to amino-acid deprivation, consistent with the presence of two putative GCN4-responsive promoter elements (Pereira and Livi 1993, 1995). To determine whether other DAHP synthases exist in C. albicans, we have constructed a homozygous aro3-deletion mutant strain. Such a mutant was found to be phenotypically Aro+, i. e., capable of normal growth on SC-Aro media, suggesting the presence of at least one additional isozyme. To confirm this result, a 222-bp DNA fragment was amplified by the polymerase chain reaction (PCR) from genomic DNA prepared from the homozygous aro3-deletion mutant, using a degenerate primer based on a conserved N-terminal region of Aro3p plus a degenerate comeback primer encoding a conserved region of the protein that lies within the deleted portion of the gene. The nucleotide sequence of this PCR fragment predicts a 74-amino acid DAHP synthase-related protein which shows strong homology to Aro3p from S. cerevisiae and C. albicans, but even greater homology (78% identity) to S. cerevisiae Aro4p. We conclude that cells of C. albicans contain a second Aro4p-related DAHP synthase.
Mesh Terms:
3-Deoxy-7-Phosphoheptulonate Synthase, Amino Acid Sequence, Amino Acids, Base Sequence, Candida albicans, Conserved Sequence, Genes, Fungal, Isoenzymes, Molecular Sequence Data, Mutagenesis, Polymerase Chain Reaction, Sequence Deletion, Sequence Homology, Amino Acid
Curr. Genet.
Date: Apr. 01, 1996
Download Curated Data For This Publication
39526
Switch View:
  • Interactions 1