Identification of a domain of Axin that binds to the serine/threonine protein phosphatase 2A and a self-binding domain.

Axin is a negative regulator of embryonic axis formation in vertebrates, which acts through a Wnt signal transduction pathway involving the serine/threonine kinase GSK-3 and beta-catenin. Axin has been shown to have distinct binding sites for GSK-3 and beta-catenin and to promote the phosphorylation of beta-catenin and its consequent degradation. ...
This provides an explanation for the ability of Axin to inhibit signaling through beta-catenin. In addition, a more N-terminal region of Axin binds to adenomatous polyposis coli (APC), a tumor suppressor protein that also regulates levels of beta-catenin. Here, we report the results of a yeast two-hybrid screen for proteins that interact with the C-terminal third of Axin, a region in which no binding sites for other proteins have previously been identified. We found that Axin can bind to the catalytic subunit of the serine/threonine protein phosphatase 2A through a domain between amino acids 632 and 836. This interaction was confirmed by in vitro binding studies as well as by co-immunoprecipitation of epitope-tagged proteins expressed in cultured cells. Our results suggest that protein phosphatase 2A might interact with the Axin.APC.GSK-3.beta-catenin complex, where it could modulate the effect of GSK-3 on beta-catenin or other proteins in the complex. We also identified a region of Axin that may allow it to form dimers or multimers. Through two-hybrid and co-immunoprecipitation studies, we demonstrated that the C-terminal 100 amino acids of Axin could bind to the same region as other Axin molecules.
Mesh Terms:
Cell Line, Humans, Molecular Sequence Data, Phosphoprotein Phosphatases, Phosphorylation, Precipitin Tests, Protein Binding, Protein Phosphatase 2, Proteins, Repressor Proteins
J. Biol. Chem.
Date: Feb. 05, 1999
Download Curated Data For This Publication
47442
Switch View:
  • Interactions 8