The modified human DNA repair enzyme O(6)-methylguanine-DNA methyltransferase is a negative regulator of estrogen receptor-mediated transcription upon alkylation DNA damage.

Cell proliferation requires precise control to prevent mutations from replication of (unrepaired) damaged DNA in cells exposed spontaneously to mutagens. Here we show that the modified human DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (R-MGMT), formed from the suicidal repair of the mutagenic O(6)-alkylguanine (6RG) lesions by MGMT in the cells exposed ...
to alkylating carcinogens, functions in such control by preventing the estrogen receptor (ER) from transcription activation that mediates cell proliferation. This function is in contrast to the phosphotriester repair domain of bacterial ADA protein, which acts merely as a transcription activator for its own synthesis upon repair of phosphotriester lesions. First, MGMT, which is constitutively present at active transcription sites, coprecipitates with the transcription integrator CREB-binding protein CBP/p300 but not R-MGMT. Second, R-MGMT, which adopts an altered conformation, utilizes its exposed VLWKLLKVV peptide domain (codons 98 to 106) to bind ER. This binding blocks ER from association with the LXXLL motif of its coactivator, steroid receptor coactivator-1, and thus represses ER effectively from carrying out transcription that regulates cell growth. Thus, through a change in conformation upon repair of the 6RG lesion, MGMT switches from a DNA repair factor to a transcription regulator (R-MGMT), enabling the cell to sense as well as respond to mutagens. These results have implications in chemotherapy and provide insights into the mechanisms for linking transcription suppression with transcription-coupled DNA repair.
Mesh Terms:
Alkylation, Amino Acid Motifs, Amino Acid Sequence, Blotting, Western, Cell Division, DNA Damage, DNA Repair, Down-Regulation, Flow Cytometry, Glutathione Transferase, Humans, Immunohistochemistry, Molecular Sequence Data, O(6)-Methylguanine-DNA Methyltransferase, Protein Binding, RNA, Messenger, Receptors, Estrogen, Recombinant Fusion Proteins, Reverse Transcriptase Polymerase Chain Reaction, Transcription, Genetic, Two-Hybrid System Techniques
Mol. Cell. Biol.
Date: Oct. 01, 2001
Download Curated Data For This Publication
Switch View:
  • Interactions 6