A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease.

Analysis of protein-protein interactions (PPIs) is a valuable approach for characterizing proteins of unknown function. Here, we have developed a strategy combining library and matrix yeast two-hybrid screens to generate a highly connected PPI network for Huntington's disease (HD). The network contains 186 PPIs among 35 bait and 51 prey ...
proteins. It revealed 165 new potential interactions, 32 of which were confirmed by independent binding experiments. The network also permitted the functional annotation of 16 uncharacterized proteins and facilitated the discovery of GIT1, a G protein-coupled receptor kinase-interacting protein, which enhances huntingtin aggregation by recruitment of the protein into membranous vesicles. Coimmunoprecipitations and immunofluorescence studies revealed that GIT1 and huntingtin associate in mammalian cells under physiological conditions. Moreover, GIT1 localizes to neuronal inclusions, and is selectively cleaved in HD brains, indicating that its distribution and function is altered during disease pathogenesis.
Mesh Terms:
Adaptor Proteins, Signal Transducing, Amino Acid Sequence, Animals, Antibodies, Monoclonal, Binding Sites, COS Cells, Cell Cycle Proteins, Cercopithecus aethiops, GTPase-Activating Proteins, Glutathione, Humans, Huntington Disease, Mice, Mice, Transgenic, Nerve Tissue Proteins, Nuclear Proteins, PC12 Cells, Phosphoproteins, Precipitin Tests, Proline, Protein Binding, Protein Structure, Tertiary, RNA Interference, Rats, Recombinant Fusion Proteins, Tissue Distribution, Two-Hybrid System Techniques
Mol. Cell
Date: Sep. 24, 2004
Download Curated Data For This Publication
64199
Switch View:
  • Interactions 191