Genome-wide surveys for phosphorylation-dependent substrates of SCF ubiquitin ligases.

The SCF (Skp1-Cullin-F-box) family of ubiquitin ligases target numerous substrates for ubiquitin-dependent proteolysis, including cell cycle regulators, transcription factors, and signal transducers. Substrates are recruited to an invariant core SCF complex through one of a large family of substrate-specific adapter subunits called F-box proteins, each of which binds multiple specific ...
substrates, often in a phosphorylation-dependent manner. The identification of substrates for SCF complexes has proven difficult, especially given the requirement of often complex phosphorylation events for substrate recognition. The archetype for such interactions is the binding of the yeast F-box protein Cdc4 to its various substrates by means of multiple motifs that weakly match an optimal consensus called the Cdc4 phosphodegron (CPD), which is phosphorylated by cyclin-dependent kinases (CDKs) and possibly other kinases. Provided phosphodegron recognition motifs and/or the targeting kinases for SCF substrates are delineated, it is possible to use genome-wide methods to identify new substrates. Here we describe two methods for the systematic retrieval of SCF substrates based on membrane arrays of synthetic phosphopeptides and on genome-wide kinase substrate profiles. In the first approach, which identifies substrates with strong matches to the CPD, a search of the predicted yeast proteome with the optimal CPD motif identified approximately 1100 matches. A phosphopeptide membrane array corresponding to each of these sequences is then probed with recombinant Cdc4, thereby identifying potential substrates. In the second approach, which identifies substrates that lack strong CPD motifs, a genome-wide set of recombinant CDK substrates is phosphorylated and directly assayed for binding to Cdc4. The proteins corresponding to these hits from each approach can then be subjected to the more stringent criteria of phosphorylation-dependent binding to Cdc4, ubiquitination by SCF(Cdc4)in vitro, and Cdc4-dependent protein instability in vivo. Both methods have identified novel substrates of Cdc4 and may, in principle, be used to identify numerous new substrates of other SCF and SCF-like complexes from yeast to humans.
Mesh Terms:
Amino Acid Sequence, Genome, Molecular Sequence Data, Phosphorylation, SKP Cullin F-Box Protein Ligases, Substrate Specificity
Meth. Enzymol.
Date: Dec. 13, 2005
Download Curated Data For This Publication
67165
Switch View:
  • Interactions 23