Genetic evidence for phospholipid-mediated regulation of the Rab GDP-dissociation inhibitor in fission yeast.

We have previously identified mutant alleles of genes encoding two Rab proteins, Ypt3 and Ryh1, through a genetic screen using the immunosuppressant drug FK506 in fission yeast. In the same screen, we isolated gdi1-i11, a mutant allele of the essential gdi1+ gene encoding Rab GDP-dissociation inhibitor. In gdi1-i11, a conserved ...
Gly267 was substituted by Asp. The Gdi1G267D protein failed to extract Rabs from membrane and Rabs were depleted from the cytosolic fraction in the gdi1-i11 mutant cells. Consistently, the Gdi1G267D protein was found mostly in the membrane fraction, whereas wild-type Gdi1 was found in both the cytosolic and the membrane fraction. Notably, overexpression of spo20+, encoding a phosphatidylcholine/phosphatidylinositol transfer protein, rescued gdi1-i11 mutation, but not ypt3-i5 or ryh1-i6. The gdi1-i11 and spo20-KC104 mutations are synthetically lethal, and the wild-type Gdi1 failed to extract Rabs from the membrane in the spo20-KC104 mutant. The phosphatidylinositol-transfer activity of Spo20 is dispensable for the suppression of the gdi1-i11 mutation, suggesting that the phosphatidylcholine-transfer activity is important for the suppression. Furthermore, knockout of the pct1+ gene encoding a choline phosphate cytidyltransferase rescued the gdi1-i11 mutation. Together, our findings suggest that Spo20 modulates Gdi1 function via regulation of phospholipid metabolism of the membranes.
Mesh Terms:
Alleles, Amino Acid Sequence, Amino Acid Substitution, Asparagine, Gene Deletion, Genes, Fungal, Genetic Complementation Test, Golgi Apparatus, Guanine Nucleotide Dissociation Inhibitors, Molecular Sequence Data, Phospholipids, Schizosaccharomyces, Sequence Homology, Amino Acid, rab GTP-Binding Proteins
Genetics
Date: Nov. 01, 2006
Download Curated Data For This Publication
69467
Switch View:
  • Interactions 8