ASF1 binds to a heterodimer of histones H3 and H4: a two-step mechanism for the assembly of the H3-H4 heterotetramer on DNA.

The first step in the formation of the nucleosome is commonly assumed to be the deposition of a histone H3-H4 heterotetramer onto DNA. Antisilencing function 1 (ASF1) is a major histone H3-H4 chaperone that deposits histones H3 and H4 onto DNA. With a goal of understanding the mechanism of deposition ...
of histones H3 and H4 onto DNA, we have determined the stoichiometry of the Asf1-H3-H4 complex. We have established that a single molecule of Asf1 binds to an H3-H4 heterodimer using gel filtration, amino acid, reversed-phase chromatography, and analytical ultracentrifugation analyses. We demonstrate that Asf1 blocks formation of the H3-H4 heterotetramer by a mechanism that likely involves occlusion of the H3-H3 dimerization interface.
Mesh Terms:
Cell Cycle Proteins, Chromatography, Gel, Chromatography, High Pressure Liquid, DNA, Dimerization, Histones, Molecular Chaperones, Molecular Weight, Nucleosomes, Saccharomyces cerevisiae Proteins, Ultracentrifugation
Biochemistry
Date: Oct. 25, 2005
Download Curated Data For This Publication
70822
Switch View:
  • Interactions 4