Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches.
A comprehensive understanding of the cellular functions of the Hsp90 molecular chaperone has remained elusive. Although Hsp90 is essential, highly abundant under normal conditions, and further induced by environmental stress, only a limited number of Hsp90 "clients" have been identified. To define Hsp90 function, a panel of genome-wide chemical-genetic screens ... in Saccharomyces cerevisiae were combined with bioinformatic analyses. This approach identified several unanticipated functions of Hsp90 under normal conditions and in response to stress. Under normal growth conditions, Hsp90 plays a major role in various aspects of the secretory pathway and cellular transport; during environmental stress, Hsp90 is required for the cell cycle, meiosis, and cytokinesis. Importantly, biochemical and cell biological analyses validated several of these Hsp90-dependent functions, highlighting the potential of our integrated global approach to uncover chaperone functions in the cell.
Mesh Terms:
Biological Transport, Cell Cycle, Computational Biology, Gene Deletion, Gene Regulatory Networks, Genome, Fungal, HSP90 Heat-Shock Proteins, Oligonucleotide Array Sequence Analysis, Reproducibility of Results, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Secretory Vesicles
Biological Transport, Cell Cycle, Computational Biology, Gene Deletion, Gene Regulatory Networks, Genome, Fungal, HSP90 Heat-Shock Proteins, Oligonucleotide Array Sequence Analysis, Reproducibility of Results, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Secretory Vesicles
Cell
Date: Oct. 05, 2007
PubMed ID: 17923092
View in: Pubmed Google Scholar
Download Curated Data For This Publication
74786
Switch View:
- Interactions 1,415