Cdc28 and Cdc14 control stability of the anaphase-promoting complex inhibitor Acm1.
The anaphase-promoting complex (APC) regulates the eukaryotic cell cycle by targeting specific proteins for proteasomal degradation. Its activity must be strictly controlled to ensure proper cell cycle progression. The co-activator proteins Cdc20 and Cdh1 are required for APC activity and are important regulatory targets. Recently, budding yeast Acm1 was identified ... as a Cdh1 binding partner and APC(Cdh1) inhibitor. Acm1 disappears in late mitosis when APC(Cdh1) becomes active and contains conserved degron-like sequences common to APC substrates, suggesting it could be both an inhibitor and substrate. Surprisingly, we found that Acm1 proteolysis is independent of APC. A major determinant of Acm1 stability is phosphorylation at consensus cyclin-dependent kinase sites. Acm1 is a substrate of Cdc28 cyclin-dependent kinase and Cdc14 phosphatase both in vivo and in vitro. Mutation of Cdc28 phosphorylation sites or conditional inactivation of Cdc28 destabilizes Acm1. In contrast, inactivation of Cdc14 prevents Acm1 dephosphorylation and proteolysis. Cdc28 stabilizes Acm1 in part by promoting binding of the 14-3-3 proteins Bmh1 and Bmh2. We conclude that the opposing actions of Cdc28 and Cdc14 are primary factors limiting Acm1 to the interval from G(1)/S to late mitosis and are capable of establishing APC-independent expression patterns similar to APC substrates.
Mesh Terms:
14-3-3 Proteins, Amino Acid Sequence, CDC28 Protein Kinase, S cerevisiae, Cell Cycle Proteins, Gene Expression Regulation, Fungal, Mitosis, Models, Biological, Molecular Sequence Data, Phosphorylation, Protein Binding, Protein Tyrosine Phosphatases, Repressor Proteins, Saccharomyces cerevisiae Proteins, Ubiquitin-Protein Ligase Complexes
14-3-3 Proteins, Amino Acid Sequence, CDC28 Protein Kinase, S cerevisiae, Cell Cycle Proteins, Gene Expression Regulation, Fungal, Mitosis, Models, Biological, Molecular Sequence Data, Phosphorylation, Protein Binding, Protein Tyrosine Phosphatases, Repressor Proteins, Saccharomyces cerevisiae Proteins, Ubiquitin-Protein Ligase Complexes
J. Biol. Chem.
Date: Apr. 18, 2008
PubMed ID: 18287090
View in: Pubmed Google Scholar
Download Curated Data For This Publication
76283
Switch View:
- Interactions 10
- PTM Genes 1