Determining the architectures of macromolecular assemblies.
To understand the workings of a living cell, we need to know the architectures of its macromolecular assemblies. Here we show how proteomic data can be used to determine such structures. The process involves the collection of sufficient and diverse high-quality data, translation of these data into spatial restraints, and ... an optimization that uses the restraints to generate an ensemble of structures consistent with the data. Analysis of the ensemble produces a detailed architectural map of the assembly. We developed our approach on a challenging model system, the nuclear pore complex (NPC). The NPC acts as a dynamic barrier, controlling access to and from the nucleus, and in yeast is a 50 MDa assembly of 456 proteins. The resulting structure, presented in an accompanying paper, reveals the configuration of the proteins in the NPC, providing insights into its evolution and architectural principles. The present approach should be applicable to many other macromolecular assemblies.
Mesh Terms:
Cell Survival, Computational Biology, Macromolecular Substances, Microscopy, Immunoelectron, Models, Biological, Nuclear Pore, Nuclear Pore Complex Proteins, Protein Binding, Proteomics, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Sensitivity and Specificity, Uncertainty
Cell Survival, Computational Biology, Macromolecular Substances, Microscopy, Immunoelectron, Models, Biological, Nuclear Pore, Nuclear Pore Complex Proteins, Protein Binding, Proteomics, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Sensitivity and Specificity, Uncertainty
Nature
Date: Nov. 29, 2007
PubMed ID: 18046405
View in: Pubmed Google Scholar
Download Curated Data For This Publication
77132
Switch View:
- Interactions 352