Prion protein insertional mutations increase aggregation propensity but not fiber stability.

BACKGROUND: Mutations in the PRNP gene account for ~15% of all prion disease cases. Little is understood about the mechanism of how some of these mutations in PRNP cause the protein to aggregate into amyloid fibers or cause disease. We have taken advantage of a chimeric protein system to study ...
the oligopeptide repeat domain (ORD) expansions of the prion protein, PrP, and their effect on protein aggregation and amyloid fiber formation. We replaced the ORD of the yeast prion protein Sup35p with that from wild type and expanded ORDs of PrP and compared their biochemical properties in vitro. We previously determined that these chimeric proteins maintain the [PSI+] yeast prion phenotype in vivo. Interestingly, we noted that the repeat expanded chimeric prions seemed to be able to maintain a stronger strain of [PSI+] and convert from [psi-] to [PSI+] with a much higher frequency. In this study we have attempted to understand the biochemical properties of these chimeric proteins and to establish a system to study the properties of the ORD of PrP both in vivo and in vitro. RESULTS: Investigation of the chimeric proteins in vitro reveals that repeat-expansions increase aggregation propensity and that the kinetics of fiber formation depends on the number of repeats. The fiber formation reactions are promiscuous in that the chimeric protein containing 14 repeats can readily cross-seed fiber formation of proteins that have the wild type number of repeats. Morphologically, the amyloid fibers formed by repeat-expanded proteins associate with each other to form large clumps that were not as prevalent in fibers formed by proteins containing the wild type number of repeats. Despite the increased aggregation propensity and lateral association of the repeat expanded proteins, there was no corresponding increase in the stability of the fibers formed. Therefore, we predict that the differences in fibers formed with different repeat lengths may not be due to gross changes in the amyloid core. CONCLUSION: The biochemical observations presented here explain the properties of these chimeric proteins previously observed in yeast. More importantly, they suggest a mechanism for the observed correlation between age of onset and disease severity with respect to the length of the ORD in humans.
Mesh Terms:
Amyloid, DNA Repeat Expansion, Kinetics, Mutagenesis, Insertional, Oligopeptides, Peptide Termination Factors, Prions, Protein Denaturation, Protein Structure, Tertiary, Saccharomyces cerevisiae Proteins
BMC Biochem.
Date: Mar. 28, 2008
Download Curated Data For This Publication
78258
Switch View:
  • Interactions 1