Ccr4 alters cell size in yeast by modulating the timing of CLN1 and CLN2 expression.

Large, multisubunit Ccr4-Not complexes are evolutionarily conserved global regulators of gene expression. Deletion of CCR4 or several components of Ccr4-Not complexes results in abnormally large cells. Since yeast must attain a critical cell size at Start to commit to division, the large size of ccr4 delta cells implies that they ...
may have a size-specific proliferation defect. Overexpression of CLN1, CLN2, CLN3, and SWI4 reduces the size of ccr4 delta cells, suggesting that ccr4 delta cells have a G(1)-phase cyclin deficiency. In support of this, we find that CLN1 and CLN2 expression and budding are delayed in ccr4 delta cells. Moreover, overexpression of CCR4 advances the timing of CLN1 expression, promotes premature budding, and reduces cell size. Genetic analyses suggest that Ccr4 functions independently of Cln3 and downstream of Bck2. Thus, like cln3 delta bck2 delta double deletions, cln3 delta ccr4 delta cells are also inviable. However, deletion of Whi5, a transcriptional repressor of CLN1 and CLN2, restores viability. We find that Ccr4 negatively regulates the half-life of WHI5 mRNAs, and we conclude that, by modulating the stability of WHI5 mRNAs, Ccr4 influences the size-dependent timing of G1-phase cyclin transcription.
Mesh Terms:
Blotting, Northern, Cell Cycle, Cyclins, Gene Expression Regulation, Fungal, Repressor Proteins, Ribonucleases, Saccharomyces cerevisiae Proteins, Yeasts
Genetics
Date: May. 01, 2008
Download Curated Data For This Publication
81409
Switch View:
  • Interactions 11