The Saccharomyces cerevisiae checkpoint genes RAD9, CHK1 and PDS1 are required for elevated homologous recombination in a mec1 (ATR) hypomorphic mutant.

Specific ataxia telangiectasia and Rad3-related (ATR) mutations confer higher frequencies of homologous recombination. The genetic requirements for hyper-recombination in ATR mutants are unknown. MEC1, the essential yeast ATR/ATM homolog, controls S and G(2) checkpoints and the DNA damage-inducibility of genes after radiation exposure. Since the mec1-Delta (null) mutant is defective ...
in both S and G(2) checkpoints, we measured spontaneous and DNA damage-associated sister chromatid exchange (SCE), homolog (heteroallelic) recombination, and homology-directed translocations in the mec1-21 hypomorphic mutant, which is defective in the S phase checkpoint but retains some G(2) checkpoint function. We observed a sixfold, tenfold and 30-fold higher rate of spontaneous SCE, heteroallelic recombination, and translocations, respectively, in mec1-21 mutants compared to wild type. The mec1-21 hyper-recombination was partially reduced in rad9, pds1 and chk1 mutants, and abolished in rad52 mutants, suggesting the hyper-recombination results from RAD52-dependent recombination pathway(s) that require G(2) checkpoint functions. The HU and UV sensitivities of mec1-21 rad9 and mec1-21 rad52 were synergistically increased, compared to the single mutants, indicating that mec1-21, rad52 and rad9 mutants are defective in independent pathways for HU and UV resistance. G(2)-arrested mec1-21 rad9 cells exhibit more UV resistance than non-synchronized cells, indicating that one function of RAD9 in conferring UV resistance in mec1-21 is by triggering G(2) arrest. We suggest that checkpoint genes that function in the RAD9-mediated pathway are required for either homologous recombination or DNA damage resistance in the S phase checkpoint mutant mec1-21.
Mesh Terms:
Cell Cycle Proteins, G2 Phase, Genes, cdc, Intracellular Signaling Peptides and Proteins, Models, Biological, Mutant Proteins, Nuclear Proteins, Organisms, Genetically Modified, Phenotype, Protein Kinases, Protein-Serine-Threonine Kinases, Rad52 DNA Repair and Recombination Protein, Recombination, Genetic, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins, Sequence Homology
Cell Cycle
Date: Aug. 01, 2008
Download Curated Data For This Publication
81601
Switch View:
  • Interactions 3