The Rtt109 histone acetyltransferase facilitates error-free replication to prevent CAG/CTG repeat contractions.

Lysine 56 is acetylated on newly synthesized histone H3 in yeast, Drosophila and mammalian cells. All of the proteins involved in histone H3 lysine 56 (H3K56) acetylation are important for maintaining genome integrity. These include Rtt109, a histone acetyltransferase, responsible for acetylating H3K56, Asf1, a histone H3/H4 chaperone, and Hst3 ...
and Hst4, histone deacetylases which remove the acetyl group from H3K56. Here we demonstrate a new role for Rtt109 and H3K56 acetylation in maintaining repetitive DNA sequences in Saccharomyces cerevisiae. We found that cells lacking RTT109 had a high level of CAG/CTG repeat contractions and a twofold increase in breakage at CAG/CTG repeats. In addition, repeat contractions were significantly increased in cells lacking ASF1 and in an hst3Deltahst4Delta double mutant. Because the Rtt107/Rtt101 complex was previously shown to be recruited to stalled replication forks in an Rtt109-dependent manner, we tested whether this complex was involved. However, contractions in rtt109Delta cells were not due to an inability to recruit the Rtt107/Rtt101 complex to repeats, as absence of these proteins had no effect on repeat stability. On the other hand, Dnl4 and Rad51-dependent pathways did play a role in creating some of the repeat contractions in rtt109Delta cells. Our results show that H3K56 acetylation by Rtt109 is important for stabilizing DNA repeats, likely by facilitating proper nucleosome assembly at the replication fork to prevent DNA structure formation and subsequent slippage events or fork breakage.
Mesh Terms:
Acetylation, DNA Replication, DNA, Fungal, Histone Acetyltransferases, Histones, Microsatellite Repeats, Saccharomyces cerevisiae, Saccharomyces cerevisiae Proteins
DNA Repair (Amst.)
Date: Apr. 04, 2010
Download Curated Data For This Publication
98665
Switch View:
  • Interactions 5