BAIT

SEY1

dynamin-like GTPase SEY1, YOR165W
Dynamin-like GTPase that mediates homotypic ER fusion; has a role in ER morphology; interacts physically and genetically with Yop1p and Rtn1p; functional ortholog of the human atlastin ATL1, defects in which cause a form of the human disease hereditary spastic paraplegia; homolog of Arabidopsis RHD3
Saccharomyces cerevisiae (S288c)
PREY

SEC39

DSL3, YLR440C
Component of the Dsl1p tethering complex; this complex interacts with ER SNAREs Sec20p and Use1p; mediates Sey1p-independent homotypic ER fusion; proposed to be involved in protein secretion; localizes to the ER and nuclear envelope
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

ER-associated retrograde SNAREs and the Dsl1 complex mediate an alternative, Sey1p-independent homotypic ER fusion pathway.

Rogers JV, McMahon C, Baryshnikova A, Hughson FM, Rose MD

The peripheral endoplasmic reticulum (ER) network is dynamically maintained by homotypic (ER-ER) fusion. In Saccharomyces cerevisiae, the dynamin-like GTPase Sey1p can mediate ER-ER fusion, but sey1Δ cells have no growth defect and only slightly perturbed ER structure. Recent work suggested that ER-localized soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate a Sey1p-independent ER-ER fusion pathway. However, an alternative explanation - ... [more]

Mol. Biol. Cell Sep. 03, 2014; 0(0); [Pubmed: 25187651]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • Figure 3
  • sey1 sec39-1 double mutant is synthetic sick

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SEC39 SEY1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2782BioGRID
2003832

Curated By

  • BioGRID