BAIT

CHO2

PEM1, phosphatidylethanolamine N-methyltransferase, L000000328, YGR157W
Phosphatidylethanolamine methyltransferase (PEMT); catalyzes the first step in the conversion of phosphatidylethanolamine to phosphatidylcholine during the methylation pathway of phosphatidylcholine biosynthesis
GO Process (1)
GO Function (1)
GO Component (2)

Gene Ontology Biological Process

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

EMC4

YGL231C
Member of conserved ER transmembrane complex; required for efficient folding of proteins in the ER; null mutant displays induction of the unfolded protein response; homologous to worm ZK616.6/EMC-4, fly CG11137, human TMM85
GO Process (1)
GO Function (0)
GO Component (2)

Gene Ontology Biological Process

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

A Conserved Endoplasmic Reticulum Membrane Protein Complex (EMC) Facilitates Phospholipid Transfer from the ER to Mitochondria.

Lahiri S, Chao JT, Tavassoli S, Wong AK, Choudhary V, Young BP, Loewen CJ, Prinz WA

Mitochondrial membrane biogenesis and lipid metabolism require phospholipid transfer from the endoplasmic reticulum (ER) to mitochondria. Transfer is thought to occur at regions of close contact of these organelles and to be nonvesicular, but the mechanism is not known. Here we used a novel genetic screen in S. cerevisiae to identify mutants with defects in lipid exchange between the ER ... [more]

PLoS Biol. Oct. 01, 2014; 12(10);e1001969 [Pubmed: 25313861]

Throughput

  • High Throughput|Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • Figure S1
  • SGA with cho2
  • Table S1

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CHO2 EMC4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2742BioGRID
382909
EMC4 CHO2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3154BioGRID
2118763
CHO2 EMC4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2429BioGRID
2121889
EMC4 CHO2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3261BioGRID
2427907
CHO2 EMC4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-6.1734BioGRID
207163
EMC4 CHO2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
212674
CHO2 EMC4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-8.0052BioGRID
899755

Curated By

  • BioGRID