BAIT
FBXW11
BTRC2, BTRCP2, FBW1B, FBXW1B, Fbw11, Hos
F-box and WD repeat domain containing 11
GO Process (12)
GO Function (2)
GO Component (5)
Gene Ontology Biological Process
- G2/M transition of mitotic cell cycle [TAS]
- SCF-dependent proteasomal ubiquitin-dependent protein catabolic process [IDA]
- mitotic cell cycle [TAS]
- negative regulation of transcription, DNA-templated [IMP]
- positive regulation of circadian rhythm [ISS]
- positive regulation of proteolysis [IMP]
- positive regulation of transcription, DNA-templated [ISS]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IDA]
- protein dephosphorylation [ISS]
- protein destabilization [IMP]
- protein polyubiquitination [IDA]
- protein ubiquitination [IDA, NAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
VAPA
VAP-33, VAP-A, VAP33, hVAP-33
VAMP (vesicle-associated membrane protein)-associated protein A, 33kDa
GO Process (16)
GO Function (6)
GO Component (8)
Gene Ontology Biological Process
- COPII-coated vesicle budding [IMP]
- ER to Golgi vesicle-mediated transport [IMP]
- cell death [IMP]
- endoplasmic reticulum organization [IMP]
- membrane fusion [TAS]
- negative regulation by host of viral genome replication [IDA]
- neuron projection development [IMP]
- positive regulation by host of viral genome replication [IDA]
- positive regulation by host of viral release from host cell [IDA]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IMP]
- protein folding in endoplasmic reticulum [IMP]
- protein localization to endoplasmic reticulum [IMP]
- signal transduction [IMP]
- small molecule metabolic process [TAS]
- sphingolipid biosynthetic process [TAS]
- sphingolipid metabolic process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Substrate Trapping Proteomics Reveals Targets of the βTrCP2/FBXW11 Ubiquitin Ligase.
Defining the full complement of substrates for each ubiquitin ligase remains an important challenge. Improvements in mass spectrometry instrumentation, computation and protein biochemistry methods have resulted in several new methods for ubiquitin ligase substrate identification. Here we used the parallel adapter capture (PAC) proteomics approach to study βTrCP2/FBXW11, a substrate adaptor for the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex. The ... [more]
Mol. Cell. Biol. Oct. 20, 2014; 0(0); [Pubmed: 25332235]
Throughput
- High Throughput
Curated By
- BioGRID