BAIT

RAD5

REV2, SNM2, DNA helicase RAD5, L000001559, YLR032W
DNA helicase/Ubiquitin ligase; involved in error-free branch of DNA damage tolerance (DDT) pathway; proposed to promote replication fork regression during postreplication repair by template switching; stimulates synthesis of free and PCNA-bound polyubiquitin chains by Ubc13p-Mms2p; required for error-prone translesion synthesis; forms nuclear foci upon DNA replication stress; associates with native telomeres, cooperates with homologous recombination in senescent cells
Saccharomyces cerevisiae (S288c)
PREY

ELG1

RTT110, S000007438, YOR144C
Subunit of an alternative replication factor C complex; important for DNA replication and genome integrity; suppresses spontaneous DNA damage; involved in homologous recombination-mediated repair and telomere homeostasis; required for PCNA (Pol30p) unloading during DNA replication
Saccharomyces cerevisiae (S288c)

Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Publication

DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity.

Gonzalez-Huici V, Szakal B, Urulangodi M, Psakhye I, Castellucci F, Menolfi D, Rajakumara E, Fumasoni M, Bermejo R, Jentsch S, Branzei D

DNA replication is sensitive to damage in the template. To bypass lesions and complete replication, cells activate recombination-mediated (error-free) and translesion synthesis-mediated (error-prone) DNA damage tolerance pathways. Crucial for error-free DNA damage tolerance is template switching, which depends on the formation and resolution of damage-bypass intermediates consisting of sister chromatid junctions. Here we show that a chromatin architectural pathway involving ... [more]

EMBO J. Feb. 18, 2014; 33(4);327-40 [Pubmed: 24473148]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: resistance to chemicals (APO:0000087)

Additional Notes

  • MMS

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ELG1 RAD5
Phenotypic Suppression
Phenotypic Suppression

A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
2758409
ELG1 RAD5
Positive Genetic
Positive Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a less severe fitness defect than expected under a given condition. This term is reserved for high or low throughput studies with scores.

High2.34BioGRID
2359224
RAD5 ELG1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
457064
RAD5 ELG1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
513441
RAD5 ELG1
Synthetic Rescue
Synthetic Rescue

A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.

Low-BioGRID
2334717

Curated By

  • BioGRID