USP2
Gene Ontology Biological Process
- circadian behavior [ISS]
- circadian regulation of gene expression [ISS]
- entrainment of circadian clock by photoperiod [ISS]
- locomotor rhythm [ISS]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of mitotic cell cycle [IMP]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IBA]
- protein deubiquitination [IDA]
- protein stabilization [IDA, IMP]
- regulation of proteasomal protein catabolic process [IBA]
Gene Ontology Molecular Function
ERBB2
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- axon guidance [TAS]
- cell proliferation [TAS]
- cell surface receptor signaling pathway [IDA]
- enzyme linked receptor protein signaling pathway [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-tyrosine phosphorylation [IDA, IGI, TAS]
- phosphatidylinositol 3-kinase signaling [IDA]
- phosphatidylinositol-mediated signaling [TAS]
- positive regulation of MAP kinase activity [IDA]
- positive regulation of Rho GTPase activity [ISS]
- positive regulation of cell adhesion [IDA]
- positive regulation of cell growth [IMP]
- positive regulation of epithelial cell proliferation [IDA]
- positive regulation of protein phosphorylation [ISS]
- positive regulation of transcription from RNA polymerase I promoter [IMP]
- positive regulation of transcription from RNA polymerase III promoter [IDA]
- positive regulation of translation [IMP]
- protein autophosphorylation [IDA]
- protein phosphorylation [TAS]
- regulation of ERK1 and ERK2 cascade [IMP]
- regulation of angiogenesis [NAS]
- regulation of microtubule-based process [IDA]
- signal transduction [IDA]
- signal transduction by phosphorylation [TAS]
- transmembrane receptor protein tyrosine kinase signaling pathway [IDA, TAS]
- wound healing [IDA]
Gene Ontology Molecular Function- ErbB-3 class receptor binding [TAS]
- RNA polymerase I core binding [IDA]
- growth factor binding [IDA]
- identical protein binding [IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein dimerization activity [NAS]
- protein heterodimerization activity [IDA, IPI]
- protein phosphatase binding [IPI]
- protein tyrosine kinase activity [IDA, IGI, TAS]
- transmembrane receptor protein tyrosine kinase activity [IDA]
- transmembrane signaling receptor activity [IDA]
- ErbB-3 class receptor binding [TAS]
- RNA polymerase I core binding [IDA]
- growth factor binding [IDA]
- identical protein binding [IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein dimerization activity [NAS]
- protein heterodimerization activity [IDA, IPI]
- protein phosphatase binding [IPI]
- protein tyrosine kinase activity [IDA, IGI, TAS]
- transmembrane receptor protein tyrosine kinase activity [IDA]
- transmembrane signaling receptor activity [IDA]
Gene Ontology Cellular Component
Biochemical Activity (Deubiquitination)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
Regulation of ErbB2 receptor status by the proteasomal DUB POH1.
Understanding the factors, which control ErbB2 and EGF receptor (EGFR) status in cells is likely to inform future therapeutic approaches directed at these potent oncogenes. ErbB2 is resistant to stimulus-induced degradation and high levels of over-expression can inhibit EGF receptor down-regulation. We now show that for HeLa cells expressing similar numbers of EGFR and ErbB2, EGFR down-regulation is efficient and ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID