SUV420H1
Gene Ontology Molecular Function
ESR1
Gene Ontology Biological Process
- cellular response to estradiol stimulus [ISS]
- chromatin remodeling [NAS]
- gene expression [TAS]
- intracellular estrogen receptor signaling pathway [NAS]
- intracellular steroid hormone receptor signaling pathway [ISS]
- negative regulation of I-kappaB kinase/NF-kappaB signaling [IDA]
- negative regulation of gene expression [IDA]
- negative regulation of sequence-specific DNA binding transcription factor activity [IDA]
- phospholipase C-activating G-protein coupled receptor signaling pathway [ISS]
- positive regulation of cytosolic calcium ion concentration [ISS]
- positive regulation of nitric oxide biosynthetic process [IDA]
- positive regulation of nitric-oxide synthase activity [IDA]
- positive regulation of phospholipase C activity [ISS]
- positive regulation of retinoic acid receptor signaling pathway [IDA]
- positive regulation of sequence-specific DNA binding transcription factor activity [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- regulation of transcription, DNA-templated [NAS]
- response to estradiol [IDA]
- response to estrogen [IDA]
- signal transduction [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- beta-catenin binding [IPI]
- chromatin binding [IDA]
- core promoter sequence-specific DNA binding [IDA]
- enzyme binding [IPI]
- estrogen receptor activity [NAS]
- estrogen response element binding [IDA]
- estrogen-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IGI]
- identical protein binding [IPI]
- nitric-oxide synthase regulator activity [NAS]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [NAS]
- steroid binding [ISS]
- steroid hormone receptor activity [TAS]
- transcription factor binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- beta-catenin binding [IPI]
- chromatin binding [IDA]
- core promoter sequence-specific DNA binding [IDA]
- enzyme binding [IPI]
- estrogen receptor activity [NAS]
- estrogen response element binding [IDA]
- estrogen-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IGI]
- identical protein binding [IPI]
- nitric-oxide synthase regulator activity [NAS]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [NAS]
- steroid binding [ISS]
- steroid hormone receptor activity [TAS]
- transcription factor binding [IPI]
Gene Ontology Cellular Component
Biochemical Activity (Methylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
Regulation of estrogen receptor α by histone methyltransferase SMYD2-mediated protein methylation.
Estrogen receptor alpha (ERα) is a ligand-activated transcription factor. Upon estrogen stimulation, ERα recruits a number of coregulators, including both coactivators and corepressors, to the estrogen response elements, modulating gene activation or repression. Most coregulator complexes contain histone-modifying enzymes to control ERα target gene expression in an epigenetic manner. In addition to histones, these epigenetic modifiers can modify nonhistone proteins ... [more]
Throughput
- Low Throughput
Additional Notes
- Figure S1
Curated By
- BioGRID