GYP1
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
CBF1
Gene Ontology Biological Process
- chromatin remodeling [IDA, IMP]
- chromosome segregation [IGI, IMP]
- negative regulation of ceramide biosynthetic process by negative regulation of transcription from RNA Polymerase II promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of inositol biosynthetic process by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of sulfate assimilation by positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- regulation of transcription from RNA polymerase II promoter in response to methionine [IMP]
Gene Ontology Molecular Function- RNA polymerase II activating transcription factor binding [IMP, IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II repressing transcription factor binding [IDA]
- RNA polymerase II transcription factor binding transcription factor activity [IMP]
- centromeric DNA binding [IDA]
- sequence-specific DNA binding [IDA]
- RNA polymerase II activating transcription factor binding [IMP, IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II repressing transcription factor binding [IDA]
- RNA polymerase II transcription factor binding transcription factor activity [IMP]
- centromeric DNA binding [IDA]
- sequence-specific DNA binding [IDA]
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Global mapping of the yeast genetic interaction network.
A genetic interaction network containing approximately 1000 genes and approximately 4000 interactions was mapped by crossing mutations in 132 different query genes into a set of approximately 4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
GYP1 CBF1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4974 | BioGRID | 415209 | |
GYP1 CBF1 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 165722 |
Curated By
- BioGRID