UBE2I
Gene Ontology Biological Process
- cellular protein metabolic process [TAS]
- cellular protein modification process [TAS]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription, DNA-templated [IDA]
- post-translational protein modification [TAS]
- protein sumoylation [IDA, TAS]
- protein ubiquitination [IBA]
- ubiquitin-dependent protein catabolic process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
ATF3
Gene Ontology Biological Process
Gene Ontology Molecular Function- RNA polymerase II regulatory region sequence-specific DNA binding [IDA]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IC]
- identical protein binding [IPI]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- transcription corepressor activity [TAS]
- RNA polymerase II regulatory region sequence-specific DNA binding [IDA]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IC]
- identical protein binding [IPI]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- transcription corepressor activity [TAS]
Biochemical Activity (Sumoylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
SUMOylation of ATF3 alters its transcriptional activity on regulation of TP53 gene.
Cyclic AMP-dependent transcription factor-3 (ATF3), a stress sensor, plays an essential role in cells to maintain homeostasis and has diverse functions in cellular survival and death signal pathways. ATF3 is a novel regulator of p53 protein stability and function. The activities of ATF3 are modulated by post-translational modifications, such as ubiquitination, but whether it is modified by small ubiquitin-related modifier ... [more]
Throughput
- Low Throughput
Additional Notes
- Figure 1B
- using SUMO1, SUMO3
Curated By
- BioGRID