UBE2I
Gene Ontology Biological Process
- cellular protein metabolic process [TAS]
- cellular protein modification process [TAS]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription, DNA-templated [IDA]
- post-translational protein modification [TAS]
- protein sumoylation [IDA, TAS]
- protein ubiquitination [IBA]
- ubiquitin-dependent protein catabolic process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
ESR1
Gene Ontology Biological Process
- cellular response to estradiol stimulus [ISS]
- chromatin remodeling [NAS]
- gene expression [TAS]
- intracellular estrogen receptor signaling pathway [NAS]
- intracellular steroid hormone receptor signaling pathway [ISS]
- negative regulation of I-kappaB kinase/NF-kappaB signaling [IDA]
- negative regulation of gene expression [IDA]
- negative regulation of sequence-specific DNA binding transcription factor activity [IDA]
- phospholipase C-activating G-protein coupled receptor signaling pathway [ISS]
- positive regulation of cytosolic calcium ion concentration [ISS]
- positive regulation of nitric oxide biosynthetic process [IDA]
- positive regulation of nitric-oxide synthase activity [IDA]
- positive regulation of phospholipase C activity [ISS]
- positive regulation of retinoic acid receptor signaling pathway [IDA]
- positive regulation of sequence-specific DNA binding transcription factor activity [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- regulation of transcription, DNA-templated [NAS]
- response to estradiol [IDA]
- response to estrogen [IDA]
- signal transduction [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- beta-catenin binding [IPI]
- chromatin binding [IDA]
- core promoter sequence-specific DNA binding [IDA]
- enzyme binding [IPI]
- estrogen receptor activity [NAS]
- estrogen response element binding [IDA]
- estrogen-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IGI]
- identical protein binding [IPI]
- nitric-oxide synthase regulator activity [NAS]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [NAS]
- steroid binding [ISS]
- steroid hormone receptor activity [TAS]
- transcription factor binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- beta-catenin binding [IPI]
- chromatin binding [IDA]
- core promoter sequence-specific DNA binding [IDA]
- enzyme binding [IPI]
- estrogen receptor activity [NAS]
- estrogen response element binding [IDA]
- estrogen-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IGI]
- identical protein binding [IPI]
- nitric-oxide synthase regulator activity [NAS]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [NAS]
- steroid binding [ISS]
- steroid hormone receptor activity [TAS]
- transcription factor binding [IPI]
Gene Ontology Cellular Component
Biochemical Activity (Sumoylation)
An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation.
Publication
Sumoylation of the estrogen receptor alpha hinge region regulates its transcriptional activity.
The steroid hormone 17beta-estradiol (estrogen) plays a significant role in the normal physiology of the mammary gland and breast cancer development primarily through binding to its receptor, the estrogen receptor alpha (ERalpha). ERalpha is a nuclear transcription factor undergoing different types of posttranslational modifications, i.e. phosphorylation, acetylation, and ubiquitination, which regulate its transcriptional activation and/or stability. Here we identify ERalpha ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| ESR1 UBE2I | Two-hybrid Two-hybrid Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation. | Low | - | BioGRID | - |
Curated By
- BioGRID