BAIT

GEA2

Arf family guanine nucleotide exchange factor GEA2, L000004717, YEL022W
Guanine nucleotide exchange factor for ADP ribosylation factors (ARFs); involved in vesicular transport between the Golgi and ER, Golgi organization, and actin cytoskeleton organization; GEA2 has a paralog, GEA1, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)
PREY

GEA1

Arf family guanine nucleotide exchange factor GEA1, L000004312, YJR031C
Guanine nucleotide exchange factor for ADP ribosylation factors (ARFs); involved in vesicular transport between the Golgi and ER, Golgi organization, and actin cytoskeleton organization; GEA1 has a paralog, GEA2, that arose from the whole genome duplication
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Arl1p regulates spatial membrane organization at the trans-Golgi network through interaction with Arf-GEF Gea2p and flippase Drs2p.

Tsai PC, Hsu JW, Liu YW, Chen KY, Lee FJ

ADP ribosylation factors (Arfs) are the central regulators of vesicle trafficking from the Golgi complex. Activated Arfs facilitate vesicle formation through stimulating coat assembly, activating lipid-modifying enzymes and recruiting tethers and other effectors. Lipid translocases (flippases) have been implicated in vesicle formation through the generation of membrane curvature. Although there is no evidence that Arfs directly regulate flippase activity, an ... [more]

Proc. Natl. Acad. Sci. U.S.A. Feb. 19, 2013; 110(8);E668-77 [Pubmed: 23345439]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: temperature sensitive growth (APO:0000092)
  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • Figure 4

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
GEA1 GEA2
Co-fractionation
Co-fractionation

Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.

Low-BioGRID
-
GEA1 GEA2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-15.666BioGRID
208322
GEA2 GEA1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
208326
GEA1 GEA2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-21.702BioGRID
895806
GEA1 GEA2
Phenotypic Enhancement
Phenotypic Enhancement

A genetic interaction is inferred when mutation or overexpression of one gene results in enhancement of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene.

Low-BioGRID
156255
GEA1 GEA2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
3017542
GEA1 GEA2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
2399397
GEA1 GEA2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
422894
GEA1 GEA2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158076

Curated By

  • BioGRID