BAIT

NEO1

putative aminophospholipid-translocating P4-type ATPase NEO1, L000004112, YIL048W
Putative aminophospholipid translocase (flippase); involved in endocytosis, vacuolar biogenesis and Golgi to ER vesicle-mediated transport; localizes to endosomes and the Golgi apparatus
Saccharomyces cerevisiae (S288c)
PREY

DRS2

FUN38, SWA3, aminophospholipid-translocating P4-type ATPase DRS2, L000000526, YAL026C
Trans-golgi network aminophospholipid translocase (flippase); maintains membrane lipid asymmetry in post-Golgi secretory vesicles; contributes to clathrin-coated vesicle formation, endocytosis, protein trafficking between the Golgi and endosomal system and the cellular response to mating pheromone; autoinhibited by its C-terminal tail; localizes to the trans-Golgi network; mutations in human homolog ATP8B1 result in liver disease
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Role of phosphatidylserine in phospholipid flippase-mediated vesicle transport in Saccharomyces cerevisiae.

Takeda M, Yamagami K, Tanaka K

Phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of cell membranes to generate and maintain phospholipid asymmetry. The genome of budding yeast encodes four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), which associate with the Cdc50 family noncatalytic subunit, and one monomeric flippase Neo1p. Flippases have been implicated in the formation of transport vesicles, but the underlying ... [more]

Eukaryotic Cell Mar. 01, 2014; 13(3);363-75 [Pubmed: 24390140]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • DRS2-depeleted neo1-101 double mutant
  • Figure 1A

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
DRS2 NEO1
Dosage Rescue
Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Low-BioGRID
1520473
NEO1 DRS2
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.3399BioGRID
1989780
NEO1 DRS2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158352
NEO1 DRS2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
2541346

Curated By

  • BioGRID