BAIT

ARP9

RSC12, SWP59, L000003438, YMR033W
Component of both the SWI/SNF and RSC chromatin remodeling complexes; actin-related protein involved in transcriptional regulation
Saccharomyces cerevisiae (S288c)
PREY

RTT102

L000004851, YGR275W
Component of both the SWI/SNF and RSC chromatin remodeling complexes; suggested role in chromosome maintenance; possible weak regulator of Ty1 transposition; protein abundance increases in response to DNA replication stress
GO Process (4)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Reconstituted Complex

An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.

Publication

Subunit Rtt102 controls the conformation of the Arp7/9 heterodimer and its interactions with nucleotide and the catalytic subunit of SWI/SNF remodelers.

Turegun B, Kast DJ, Dominguez R

Chromatin-remodeling complexes are assembled around a catalytic subunit that contains a central ATPase domain and flanking sequences that recruit auxiliary subunits. The catalytic subunits of SWI/SNF remodelers recruit Arp7/9 through a helicase/SANT-associated (HSA) domain N-terminal to the ATPase domain. Arp7/9-containing remodelers also carry the auxiliary subunit Rtt102, but the role of this subunit is poorly understood. Here, we show that ... [more]

J. Biol. Chem. Dec. 13, 2013; 288(50);35758-68 [Pubmed: 24189066]

Throughput

  • Low Throughput

Additional Notes

  • Table 2
  • isothermal titration calorimetry

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RTT102 ARP9
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
ARP9 RTT102
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
2460015
RTT102 ARP9
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
2460017
ARP9 RTT102
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RTT102 ARP9
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RTT102 ARP9
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RTT102 ARP9
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High-BioGRID
-
RTT102 ARP9
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

High6BioGRID
3597407
ARP9 RTT102
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5879BioGRID
404098
ARP9 RTT102
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.6424BioGRID
2005379
RTT102 ARP9
Reconstituted Complex
Reconstituted Complex

An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.

Low-BioGRID
-

Curated By

  • BioGRID