BAIT

CNB1

CRV1, YCN2, calcineurin regulatory subunit B, L000000371, YKL190W
Calcineurin B; regulatory subunit of calcineurin, a Ca++/calmodulin-regulated type 2B protein phosphatase which regulates Crz1p (stress-response transcription factor); other calcineurin subunit encoded by CNA1 and/or CMP1; regulates function of Aly1p alpha-arrestin; myristoylation by Nmt1p reduces calcineurin activity in response to submaximal Ca signals, is needed to prevent constitutive phosphatase activity; protein abundance increases in response to DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

BEM1

SRO1, phosphatidylinositol-3-phosphate-binding protein BEM1, L000000167, YBR200W
Protein containing SH3-domains; involved in establishing cell polarity and morphogenesis; functions as a scaffold protein for complexes that include Cdc24p, Ste5p, Ste20p, and Rsr1p
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways.

Parsons AB, Brost RL, Ding H, Li Z, Zhang C, Sheikh B, Brown GW, Kane PM, Hughes TR, Boone C

Bioactive compounds can be valuable research tools and drug leads, but it is often difficult to identify their mechanism of action or cellular target. Here we investigate the potential for integration of chemical-genetic and genetic interaction data to reveal information about the pathways and targets of inhibitory compounds. Taking advantage of the existing complete set of yeast haploid deletion mutants, ... [more]

Nat. Biotechnol. Jan. 01, 2004; 22(1);62-9 [Pubmed: 14661025]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
BEM1 CNB1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-3.7643BioGRID
324447

Curated By

  • BioGRID