ITCH
Gene Ontology Biological Process
- Notch signaling pathway [TAS]
- inflammatory response [NAS]
- innate immune response [TAS]
- negative regulation of JNK cascade [ISS]
- negative regulation of NF-kappaB transcription factor activity [ISS]
- negative regulation of apoptotic process [IMP]
- negative regulation of defense response to virus [IMP]
- negative regulation of type I interferon production [TAS]
- nucleotide-binding domain, leucine rich repeat containing receptor signaling pathway [TAS]
- nucleotide-binding oligomerization domain containing signaling pathway [TAS]
- protein K29-linked ubiquitination [IDA]
- protein K48-linked ubiquitination [IDA]
- protein K63-linked ubiquitination [IDA]
- protein ubiquitination [IDA]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IBA]
- regulation of cell growth [NAS]
- regulation of protein deubiquitination [ISS]
- ubiquitin-dependent protein catabolic process [IDA, NAS]
- viral entry into host cell [TAS]
Gene Ontology Molecular Function
TP53BP2
Gene Ontology Biological Process
Gene Ontology Molecular Function
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
The E3 ubiquitin ligase Itch and Yap1 have antagonistic roles in the regulation of ASPP2 protein stability.
ASPP2 is an important tumor suppressor protein promoting p53-dependent and-independent apoptosis. However, it has been unclear how ASPP2 protein is regulated. Here, we identified Itch as the E3 ubiquitin ligase for ASPP2. Itch interacts with ASPP2 and mediates its degradation and ubiquitination in vivo. The PPXY motif of ASPP2 interacts with the WW domains of Itch. Yap1 competes with Itch ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
TP53BP2 ITCH | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
TP53BP2 ITCH | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
ITCH TP53BP2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
TP53BP2 ITCH | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - | |
ITCH TP53BP2 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - |
Curated By
- BioGRID