G6PD
Gene Ontology Biological Process
- NADP metabolic process [IDA]
- NADPH regeneration [IMP]
- carbohydrate metabolic process [TAS]
- cellular response to oxidative stress [IMP]
- cholesterol biosynthetic process [IMP]
- cytokine production [IMP]
- erythrocyte maturation [IMP]
- glucose 6-phosphate metabolic process [IDA, IMP]
- glutathione metabolic process [IMP]
- lipid metabolic process [TAS]
- negative regulation of protein glutathionylation [IMP]
- oxidation-reduction process [IMP]
- pentose biosynthetic process [IDA]
- pentose-phosphate shunt [IDA, TAS]
- pentose-phosphate shunt, oxidative branch [IMP]
- ribose phosphate biosynthetic process [IMP]
- small molecule metabolic process [TAS]
- substantia nigra development [IEP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
HSPB1
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- cellular component movement [TAS]
- cellular response to vascular endothelial growth factor stimulus [IMP]
- gene expression [TAS]
- intracellular signal transduction [IMP]
- mRNA metabolic process [TAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway [ISS]
- negative regulation of protein kinase activity [ISS]
- platelet aggregation [IMP]
- positive regulation of angiogenesis [IMP]
- positive regulation of blood vessel endothelial cell migration [IMP]
- positive regulation of endothelial cell chemotaxis [IMP]
- positive regulation of endothelial cell chemotaxis by VEGF-activated vascular endothelial growth factor receptor signaling pathway [IMP]
- positive regulation of interleukin-1 beta production [ISS]
- positive regulation of tumor necrosis factor biosynthetic process [ISS]
- regulation of I-kappaB kinase/NF-kappaB signaling [ISS]
- regulation of translational initiation [TAS]
- response to unfolded protein [NAS]
- response to virus [IEP]
- retina homeostasis [IEP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Co-fractionation
Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.
Publication
Panorama of ancient metazoan macromolecular complexes
Macromolecular complexes are essential to conserved biological processes, but their prevalence across animals is unclear. By combining extensive biochemical fractionation with quantitative mass spectrometry, here we directly examined the composition of soluble multiprotein complexes among diverse metazoan models. Using an integrative approach, we generated a draft conservation map consisting of more than one million putative high-confidence co-complex interactions for species ... [more]
Quantitative Score
- 0.139158265 [Confidence Score]
Throughput
- High Throughput
Additional Notes
- Fractionation was combined with mass spectrometry from five diverse animal species to predict co-complex protein interactions conserved across metazoa using an integrative computational scoring procedure along with an SVM approach. The significant data set of 16655 PPI, was derived from a set of more than 1M interactions by examining a ROC curve of predicted interactions against reference annotated complexes at a 67.5% cumulative precision.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
HSPB1 G6PD | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
G6PD HSPB1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
HSPB1 G6PD | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | - | BioGRID | 3434929 |
Curated By
- BioGRID