BAIT
ABL1
ABL, JTK7, bcr/abl, c-ABL, c-ABL1, p150, v-abl, RP11-83J21.1
ABL proto-oncogene 1, non-receptor tyrosine kinase
GO Process (40)
GO Function (16)
GO Component (9)
Gene Ontology Biological Process
- DNA damage induced protein phosphorylation [IDA]
- Fc-gamma receptor signaling pathway involved in phagocytosis [TAS]
- actin cytoskeleton organization [ISS]
- axon guidance [TAS]
- blood coagulation [TAS]
- cell cycle arrest [TAS]
- cell differentiation [IBA]
- cell migration [IBA]
- cellular protein modification process [NAS]
- cellular response to DNA damage stimulus [IDA]
- cellular response to dopamine [TAS]
- cellular response to oxidative stress [TAS]
- epidermal growth factor receptor signaling pathway [IBA]
- innate immune response [IBA, TAS]
- intrinsic apoptotic signaling pathway in response to DNA damage [TAS]
- mismatch repair [TAS]
- mitochondrial depolarization [TAS]
- mitotic nuclear division [TAS]
- muscle cell differentiation [TAS]
- negative regulation of phospholipase C activity [IMP]
- negative regulation of protein serine/threonine kinase activity [IDA]
- negative regulation of ubiquitin-protein transferase activity [IDA, TAS]
- peptidyl-tyrosine autophosphorylation [IBA]
- peptidyl-tyrosine phosphorylation [IDA, TAS]
- platelet-derived growth factor receptor signaling pathway [IBA]
- positive regulation of apoptotic process [IDA]
- positive regulation of cytosolic calcium ion concentration [IMP]
- positive regulation of muscle cell differentiation [TAS]
- positive regulation of oxidoreductase activity [IDA]
- positive regulation of peptidyl-tyrosine phosphorylation [IDA]
- regulation of actin cytoskeleton reorganization [TAS]
- regulation of autophagy [TAS]
- regulation of cell adhesion [TAS]
- regulation of cell motility [TAS]
- regulation of cell proliferation [IBA]
- regulation of endocytosis [TAS]
- regulation of response to DNA damage stimulus [IDA]
- regulation of transcription, DNA-templated [TAS]
- response to oxidative stress [IGI]
- signal transduction in response to DNA damage [IDA]
Gene Ontology Molecular Function- ATP binding [IDA]
- DNA binding [NAS]
- SH3 domain binding [IPI]
- actin monomer binding [TAS]
- magnesium ion binding [IDA]
- manganese ion binding [IDA]
- mitogen-activated protein kinase binding [IPI]
- nicotinate-nucleotide adenylyltransferase activity [TAS]
- non-membrane spanning protein tyrosine kinase activity [IDA]
- proline-rich region binding [IDA, IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein kinase activity [IDA]
- protein tyrosine kinase activity [IDA]
- receptor binding [IBA]
- syntaxin binding [IPI]
- ATP binding [IDA]
- DNA binding [NAS]
- SH3 domain binding [IPI]
- actin monomer binding [TAS]
- magnesium ion binding [IDA]
- manganese ion binding [IDA]
- mitogen-activated protein kinase binding [IPI]
- nicotinate-nucleotide adenylyltransferase activity [TAS]
- non-membrane spanning protein tyrosine kinase activity [IDA]
- proline-rich region binding [IDA, IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein kinase activity [IDA]
- protein tyrosine kinase activity [IDA]
- receptor binding [IBA]
- syntaxin binding [IPI]
Gene Ontology Cellular Component
Homo sapiens
PREY
LARS
HSPC192, ILFS1, LARS1, LEURS, LEUS, LFIS, LRS, PIG44, RNTLS, hr025Cl
leucyl-tRNA synthetase
GO Process (4)
GO Function (3)
GO Component (3)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Homo sapiens
Co-fractionation
Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.
Publication
Panorama of ancient metazoan macromolecular complexes
Macromolecular complexes are essential to conserved biological processes, but their prevalence across animals is unclear. By combining extensive biochemical fractionation with quantitative mass spectrometry, here we directly examined the composition of soluble multiprotein complexes among diverse metazoan models. Using an integrative approach, we generated a draft conservation map consisting of more than one million putative high-confidence co-complex interactions for species ... [more]
Nature Sep. 17, 2015; 525(7569);339-44 [Pubmed: 26344197]
Quantitative Score
- 0.102741901 [Confidence Score]
Throughput
- High Throughput
Additional Notes
- Fractionation was combined with mass spectrometry from five diverse animal species to predict co-complex protein interactions conserved across metazoa using an integrative computational scoring procedure along with an SVM approach. The significant data set of 16655 PPI, was derived from a set of more than 1M interactions by examining a ROC curve of predicted interactions against reference annotated complexes at a 67.5% cumulative precision.
Curated By
- BioGRID