BAIT
ATP2A2
ATP2B, DAR, DD, SERCA2
ATPase, Ca++ transporting, cardiac muscle, slow twitch 2
GO Process (17)
GO Function (7)
GO Component (10)
Gene Ontology Biological Process
- blood coagulation [TAS]
- calcium ion import into sarcoplasmic reticulum [IC, ISS]
- calcium ion transmembrane transport [IDA]
- calcium ion transport from cytosol to endoplasmic reticulum [IDA]
- cell adhesion [TAS]
- cellular calcium ion homeostasis [IDA]
- endoplasmic reticulum calcium ion homeostasis [IDA]
- epidermis development [TAS]
- ion transmembrane transport [TAS]
- positive regulation of endoplasmic reticulum calcium ion concentration [IDA]
- positive regulation of heart rate [TAS]
- regulation of cardiac muscle cell action potential involved in regulation of contraction [ISS]
- regulation of cardiac muscle cell membrane potential [IC, ISS, TAS]
- regulation of cardiac muscle contraction by calcium ion signaling [IDA]
- relaxation of cardiac muscle [IDA]
- sarcoplasmic reticulum calcium ion transport [TAS]
- transmembrane transport [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- calcium ion-transporting ATPase complex [IDA]
- endoplasmic reticulum [IDA]
- endoplasmic reticulum membrane [IDA, TAS]
- integral component of plasma membrane [TAS]
- intercalated disc [IDA]
- longitudinal sarcoplasmic reticulum [IDA]
- membrane [IDA]
- platelet dense tubular network membrane [TAS]
- sarcoplasmic reticulum [IDA]
- sarcoplasmic reticulum membrane [IC, TAS]
Homo sapiens
PREY
NOTCH2
AGS2, HJCYS, hN2
notch 2
GO Process (22)
GO Function (3)
GO Component (10)
Gene Ontology Biological Process
- Notch receptor processing [TAS]
- Notch signaling involved in heart development [IC]
- Notch signaling pathway [TAS]
- apoptotic process [TAS]
- atrial septum morphogenesis [IMP]
- bone remodeling [IMP]
- cell cycle arrest [IDA]
- cell fate determination [TAS]
- cell growth [IDA]
- gene expression [TAS]
- hemopoiesis [TAS]
- intracellular receptor signaling pathway [TAS]
- multicellular organismal development [NAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of cell proliferation [IDA]
- nervous system development [NAS]
- organ morphogenesis [IEP]
- positive regulation of Ras protein signal transduction [IDA]
- pulmonary valve morphogenesis [IMP]
- regulation of transcription, DNA-templated [TAS]
- stem cell maintenance [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Co-fractionation
Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.
Publication
Panorama of ancient metazoan macromolecular complexes
Macromolecular complexes are essential to conserved biological processes, but their prevalence across animals is unclear. By combining extensive biochemical fractionation with quantitative mass spectrometry, here we directly examined the composition of soluble multiprotein complexes among diverse metazoan models. Using an integrative approach, we generated a draft conservation map consisting of more than one million putative high-confidence co-complex interactions for species ... [more]
Nature Sep. 17, 2015; 525(7569);339-44 [Pubmed: 26344197]
Quantitative Score
- 0.074210356 [Confidence Score]
Throughput
- High Throughput
Additional Notes
- Fractionation was combined with mass spectrometry from five diverse animal species to predict co-complex protein interactions conserved across metazoa using an integrative computational scoring procedure along with an SVM approach. The significant data set of 16655 PPI, was derived from a set of more than 1M interactions by examining a ROC curve of predicted interactions against reference annotated complexes at a 67.5% cumulative precision.
Curated By
- BioGRID