TNPO1
Gene Ontology Biological Process
Gene Ontology Molecular Function
RAN
Gene Ontology Biological Process
- DNA metabolic process [TAS]
- androgen receptor signaling pathway [NAS]
- gene expression [TAS]
- intracellular transport of virus [TAS]
- mitotic nuclear division [TAS]
- mitotic spindle organization [TAS]
- positive regulation of protein binding [IDA]
- positive regulation of transcription, DNA-templated [NAS]
- protein export from nucleus [IDA]
- ribosomal large subunit export from nucleus [IMP]
- ribosomal small subunit export from nucleus [IMP]
- signal transduction [TAS]
- small molecule metabolic process [TAS]
- viral life cycle [TAS]
- viral process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Co-fractionation
Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex.
Publication
Panorama of ancient metazoan macromolecular complexes
Macromolecular complexes are essential to conserved biological processes, but their prevalence across animals is unclear. By combining extensive biochemical fractionation with quantitative mass spectrometry, here we directly examined the composition of soluble multiprotein complexes among diverse metazoan models. Using an integrative approach, we generated a draft conservation map consisting of more than one million putative high-confidence co-complex interactions for species ... [more]
Quantitative Score
- 0.413974883 [Confidence Score]
Throughput
- High Throughput
Additional Notes
- Fractionation was combined with mass spectrometry from five diverse animal species to predict co-complex protein interactions conserved across metazoa using an integrative computational scoring procedure along with an SVM approach. The significant data set of 16655 PPI, was derived from a set of more than 1M interactions by examining a ROC curve of predicted interactions against reference annotated complexes at a 67.5% cumulative precision.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RAN TNPO1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 3366103 | |
RAN TNPO1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
RAN TNPO1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | - | |
RAN TNPO1 | Co-crystal Structure Co-crystal Structure Interaction directly demonstrated at the atomic level by X-ray crystallography. Also used for NMR or Electron Microscopy (EM) structures. If there is no obvious bait-hit directionality to the interaction involving 3 or more proteins, then the co-crystallized proteins should be listed as a complex. | Low | - | BioGRID | - | |
RAN TNPO1 | Co-fractionation Co-fractionation Interaction inferred from the presence of two or more protein subunits in a partially purified protein preparation. If co-fractionation is demonstrated between 3 or more proteins, then add them as a complex. | High | 0.815 | BioGRID | 743506 | |
RAN TNPO1 | Reconstituted Complex Reconstituted Complex An interaction is detected between purified proteins in vitro. | Low | - | BioGRID | - | |
RAN TNPO1 | Reconstituted Complex Reconstituted Complex An interaction is detected between purified proteins in vitro. | Low | - | BioGRID | - |
Curated By
- BioGRID