BAIT
MYC
MRTL, MYCC, bHLHe39, c-Myc
v-myc avian myelocytomatosis viral oncogene homolog
GO Process (39)
GO Function (9)
GO Component (4)
Gene Ontology Biological Process
- MAPK cascade [IMP]
- Notch signaling pathway [TAS]
- branching involved in ureteric bud morphogenesis [ISS]
- canonical Wnt signaling pathway [IDA]
- cell cycle arrest [IDA]
- cellular iron ion homeostasis [IDA]
- cellular response to DNA damage stimulus [IDA]
- cellular response to UV [IEP]
- cellular response to drug [IDA]
- chromatin remodeling [IDA]
- chromosome organization [IDA]
- energy reserve metabolic process [NAS]
- fibroblast apoptotic process [TAS]
- gene expression [TAS]
- negative regulation of apoptotic process [ISS]
- negative regulation of cell division [IDA]
- negative regulation of fibroblast proliferation [IDA]
- negative regulation of monocyte differentiation [IMP]
- negative regulation of stress-activated MAPK cascade [ISS]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- oxygen transport [NAS]
- positive regulation of DNA biosynthetic process [IMP]
- positive regulation of cell proliferation [IDA]
- positive regulation of cysteine-type endopeptidase activity involved in apoptotic process [IDA]
- positive regulation of epithelial cell proliferation [IDA]
- positive regulation of fibroblast proliferation [IDA, IMP]
- positive regulation of mesenchymal cell proliferation [ISS]
- positive regulation of metanephric cap mesenchymal cell proliferation [ISS]
- positive regulation of response to DNA damage stimulus [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP, TAS]
- positive regulation of transcription, DNA-templated [IDA]
- regulation of gene expression [IDA]
- regulation of telomere maintenance [IMP]
- response to drug [IEP]
- response to gamma radiation [IDA]
- response to growth factor [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function- DNA binding [ISS, TAS]
- E-box binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- protein binding [IPI]
- protein complex binding [IDA]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- DNA binding [ISS, TAS]
- E-box binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- protein binding [IPI]
- protein complex binding [IDA]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
Gene Ontology Cellular Component
Homo sapiens
PREY
ERN1
IRE1, IRE1P, IRE1a, hIRE1p
endoplasmic reticulum to nucleus signaling 1
GO Process (16)
GO Function (9)
GO Component (4)
Gene Ontology Biological Process
- HAC1-type intron splice site recognition and cleavage [IDA]
- RNA phosphodiester bond hydrolysis, endonucleolytic [IDA, TAS]
- RNA splicing [IMP]
- activation of signaling protein activity involved in unfolded protein response [IDA, TAS]
- cell cycle arrest [ISS]
- cellular protein metabolic process [TAS]
- cellular response to vascular endothelial growth factor stimulus [IDA]
- endoplasmic reticulum unfolded protein response [TAS]
- endothelial cell proliferation [IDA]
- mRNA cleavage [IDA]
- mRNA splicing, via endonucleolytic cleavage and ligation [IDA]
- peptidyl-serine autophosphorylation [IDA]
- positive regulation of RNA splicing [IDA]
- positive regulation of endoplasmic reticulum unfolded protein response [IMP]
- protein phosphorylation [IDA]
- protein trans-autophosphorylation [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Identification of synthetic lethality of PRKDC in MYC-dependent human cancers by pooled shRNA screening.
MYC family members are among the most frequently deregulated oncogenes in human cancers, yet direct therapeutic targeting of MYC in cancer has been challenging thus far. Synthetic lethality provides an opportunity for therapeutic intervention of MYC-driven cancers.A pooled kinase shRNA library screen was performed and next-generation deep sequencing efforts identified that PRKDC was synthetically lethal in cells overexpressing MYC. Genes ... [more]
BMC Cancer Dec. 17, 2014; 14(0);944 [Pubmed: 25495526]
Throughput
- Low Throughput
Additional Notes
- Overexpression of MYC
Curated By
- BioGRID