MYC
Gene Ontology Biological Process
- MAPK cascade [IMP]
- Notch signaling pathway [TAS]
- branching involved in ureteric bud morphogenesis [ISS]
- canonical Wnt signaling pathway [IDA]
- cell cycle arrest [IDA]
- cellular iron ion homeostasis [IDA]
- cellular response to DNA damage stimulus [IDA]
- cellular response to UV [IEP]
- cellular response to drug [IDA]
- chromatin remodeling [IDA]
- chromosome organization [IDA]
- energy reserve metabolic process [NAS]
- fibroblast apoptotic process [TAS]
- gene expression [TAS]
- negative regulation of apoptotic process [ISS]
- negative regulation of cell division [IDA]
- negative regulation of fibroblast proliferation [IDA]
- negative regulation of monocyte differentiation [IMP]
- negative regulation of stress-activated MAPK cascade [ISS]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- oxygen transport [NAS]
- positive regulation of DNA biosynthetic process [IMP]
- positive regulation of cell proliferation [IDA]
- positive regulation of cysteine-type endopeptidase activity involved in apoptotic process [IDA]
- positive regulation of epithelial cell proliferation [IDA]
- positive regulation of fibroblast proliferation [IDA, IMP]
- positive regulation of mesenchymal cell proliferation [ISS]
- positive regulation of metanephric cap mesenchymal cell proliferation [ISS]
- positive regulation of response to DNA damage stimulus [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP, TAS]
- positive regulation of transcription, DNA-templated [IDA]
- regulation of gene expression [IDA]
- regulation of telomere maintenance [IMP]
- response to drug [IEP]
- response to gamma radiation [IDA]
- response to growth factor [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function- DNA binding [ISS, TAS]
- E-box binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- protein binding [IPI]
- protein complex binding [IDA]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- DNA binding [ISS, TAS]
- E-box binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- protein binding [IPI]
- protein complex binding [IDA]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
Gene Ontology Cellular Component
GSK3B
Gene Ontology Biological Process
- ER overload response [IDA]
- Fc-epsilon receptor signaling pathway [TAS]
- axon guidance [TAS]
- canonical Wnt signaling pathway [IC, IDA]
- cellular response to interleukin-3 [ISS]
- circadian rhythm [ISS]
- epidermal growth factor receptor signaling pathway [TAS]
- epithelial to mesenchymal transition [IMP]
- extrinsic apoptotic signaling pathway in absence of ligand [ISS]
- fibroblast growth factor receptor signaling pathway [TAS]
- glycogen metabolic process [IDA]
- hippocampus development [IMP]
- innate immune response [TAS]
- intracellular signal transduction [IDA]
- negative regulation of NFAT protein import into nucleus [IMP]
- negative regulation of apoptotic process [IDA]
- negative regulation of canonical Wnt signaling pathway [TAS]
- negative regulation of glycogen (starch) synthase activity [TAS]
- negative regulation of glycogen biosynthetic process [TAS]
- negative regulation of protein binding [IDA]
- negative regulation of protein complex assembly [IMP]
- negative regulation of type B pancreatic cell development [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-serine phosphorylation [IDA]
- phosphatidylinositol-mediated signaling [TAS]
- positive regulation of Rac GTPase activity [IMP]
- positive regulation of cell-matrix adhesion [IMP]
- positive regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway [ISS]
- positive regulation of protein binding [ISS]
- positive regulation of protein catabolic process [IC]
- positive regulation of protein complex assembly [IDA]
- positive regulation of protein export from nucleus [IDA]
- protein phosphorylation [IDA]
- regulation of microtubule-based process [IMP]
- superior temporal gyrus development [IMP]
Gene Ontology Molecular Function- NF-kappaB binding [IPI]
- RNA polymerase II transcription factor binding [IPI]
- beta-catenin binding [IPI]
- kinase activity [IDA, TAS]
- p53 binding [IDA]
- protein binding [IPI]
- protein kinase A catalytic subunit binding [IPI]
- protein kinase binding [IPI]
- protein serine/threonine kinase activity [IDA, ISS]
- tau-protein kinase activity [IDA]
- ubiquitin protein ligase binding [IPI]
- NF-kappaB binding [IPI]
- RNA polymerase II transcription factor binding [IPI]
- beta-catenin binding [IPI]
- kinase activity [IDA, TAS]
- p53 binding [IDA]
- protein binding [IPI]
- protein kinase A catalytic subunit binding [IPI]
- protein kinase binding [IPI]
- protein serine/threonine kinase activity [IDA, ISS]
- tau-protein kinase activity [IDA]
- ubiquitin protein ligase binding [IPI]
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Identification of synthetic lethality of PRKDC in MYC-dependent human cancers by pooled shRNA screening.
MYC family members are among the most frequently deregulated oncogenes in human cancers, yet direct therapeutic targeting of MYC in cancer has been challenging thus far. Synthetic lethality provides an opportunity for therapeutic intervention of MYC-driven cancers.A pooled kinase shRNA library screen was performed and next-generation deep sequencing efforts identified that PRKDC was synthetically lethal in cells overexpressing MYC. Genes ... [more]
Throughput
- Low Throughput
Additional Notes
- Overexpression of MYC
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
MYC GSK3B | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
MYC GSK3B | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
MYC GSK3B | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
MYC GSK3B | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
GSK3B MYC | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
MYC GSK3B | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
MYC GSK3B | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - |
Curated By
- BioGRID