BAIT

TUB4

gamma-tubulin, L000002751, YLR212C
Gamma-tubulin; involved in nucleating microtubules from both the cytoplasmic and nuclear faces of the spindle pole body; protein abundance increases in response to DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

PAC10

GIM2, PFD3, RKS2, L000002864, YGR078C
Part of the heteromeric co-chaperone GimC/prefoldin complex; complex promotes efficient protein folding
GO Process (1)
GO Function (1)
GO Component (3)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Affinity Capture-Western

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.

Publication

A novel protein complex promoting formation of functional alpha- and gamma-tubulin.

Geissler S, Siegers K, Schiebel E

We describe the identification of GIM1/YKE2, GIM2/PAC10, GIM3, GIM4 and GIM5 in a screen for mutants that are synthetically lethal with tub4-1, encoding a mutated yeast gamma-tubulin. The cytoplasmic Gim proteins encoded by these GIM genes are present in common complexes as judged by co-immunoprecipitation and gel filtration experiments. The disruption of any of these genes results in similar phenotypes: ... [more]

EMBO J. Feb. 16, 1998; 17(4);952-66 [Pubmed: 9463374]

Throughput

  • Low Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
PAC10 TUB4
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
158093

Curated By

  • BioGRID