ECO1
Gene Ontology Biological Process
- DNA repair [IDA]
- DNA replication [IMP]
- chromosome organization [IMP]
- double-strand break repair [IMP]
- establishment of mitotic sister chromatid cohesion [IGI, IMP]
- internal peptidyl-lysine acetylation [IDA]
- mitotic chromosome condensation [IMP]
- regulation of DNA replication [IGI]
- regulation of mitosis [IMP]
- tRNA gene clustering [IMP]
- telomere organization [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RFC2
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Mechanical link between cohesion establishment and DNA replication: Ctf7p/Eco1p, a cohesion establishment factor, associates with three different replication factor C complexes.
CTF7/ECO1 is an essential yeast gene required for the establishment of sister chromatid cohesion. The findings that CTF7/ECO1, POL30 (PCNA), and CHL12/CTF18 (a replication factor C [RFC] homolog) genetically interact provided the first evidence that the processes of cohesion establishment and DNA replication are intimately coupled-a link now confirmed by other studies. To date, however, it is unknown how Ctf7p/Eco1p ... [more]
Throughput
- Low Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
ECO1 RFC2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.2319 | BioGRID | 1931774 |
Curated By
- BioGRID